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Abstract. In this paper we show that a space with a quasi-consistent bounded

quasi-geodesic bicombing satisfies the Morse local-to-global property. The
techniques developed allow us to show that if such has a cut-point in an as-

ymptotic cone, then it needs to have one in all of them. So far, the only other

class known to satisfy this dichotomy and containing groups with and without
cut-points in their asymptotic cones was CAT(0) spaces.

1. Introduction

This paper is concerned with local-to-global properties of Morse quasi-geodesics
in spaces that admit (bi)combings. Roughly speaking, a quasi-geodesic is Morse if
it is “the only way” to connect two points: any other quasi-geodesic connecting the
same points needs to be close to the first quasi-geodesic, that is to say, they behave
as geodesics in Gromov hyperbolic spaces. Morse quasi-geodesics are a central
object in the program of classifying groups up to quasi-isometry: quasi-isometries
take Morse quasi-geodesics to Morse quasi-geodesic, and thus they are a natural
object to study to establish which properties the two quasi-isometric groups have
in common. For instance, they can be organized in boundaries, an avenue of study
that proved very fruitful [4–6,24,28].

As mentioned, there is a close relation between the Morse property and hyper-
bolicity, for instance a group is hyperbolic if an only if all of its quasi-geodesics
are Morse [4, Section 10]. It is therefore very tempting to assume that theorems
about geodesics in hyperbolic groups hold for Morse quasi-geodesics in a general
group. Unfortunately, this is not the case. Ol’shanskii, Osin, and Sapir constructed
a torsion free, finitely generated, non-virtually cyclic group G where all periodic
quasi-geodesics are Morse but G does not have non-abelian free group, showing
that even a requirement as strong as asking that all periodic quasi-geodesic are
Morse is in general not sufficient to apply the ping-pong Lemma [22]. However,
the group G above is rather pathological, and in many examples of interest Morse
geodesics do behave as expected. To make this sentiment precise, Russel, Tran and
the second author introduced the Morse local-to-global (MLTG) in [25] in order
to isolate a property that on one hand allows to get much stronger control about
Morse geodesics, and on the other is permissive enough to be satisfied by a very
large class of groups.

Definition 1.1. A metric space X satisfies the Morse local-to-global (MLTG)
property if for every Morse gauge M and quasi-geodesic constants (λ, κ) there is a
scale L so that if a path is L–locally an M–Morse (λ, κ)–quasi-geodesic, then it is
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globally a Morse quasi geodesic, where the global constants only depend on the local
ones.

Even without knowing what a Morse quasi-geodesic is, for which we refer to
Definition 2.10, it is not hard to get a feeling of the above property, as it requires
that paths that are “good” at a large enough scale, are still good. Local-to-global
properties have been previously studied in geometric group theory, perahps the two
most known example are the Cartan-Hadamard theorem and the fact that a space
where local quasi-geodesics are global quasi-geodesics is a Gromov hyperbolic space
[18].

1.1. Why consider the Morse local-to-global property. The MLTG property
has many consequences of interests regarding the behaviour of Morse geodesics.
For a group G with the MLTG property the following holds. If H,K ≤ G are
stable subgroups, there are conditions analogous the hyperbolic case that guarantee
⟨H,K⟩ ∼= H ∗H∩K K, i.e. the group they generate is as large as possible. The
translation lengths of conjugacy classes of Morse elements on a Cayley graph form
a discrete set of rational numbers. If G contains a Morse element and N is infinite
and normal in G, then N contains a Morse element [25]. There is a growth gap
between the growth of G and any infinite index stable subgroup H of G. Moreover,
the growth series of H is rational, and the language of geodesics between elements
of H is regular. In general, the set of Morse geodesics (for fixed parameters) form
a regular language [8]. If G has the property that stable subgroups are separable,
then the product of finitely many stable subgroups is separable [21]. The Morse
boundary of G is strongly σ–compact, and if G is not hyperbolic and satisfy a mild
non-positive curvature condition, the image of it needs to have vanishing measure
in any boundary equipped with a stationary measure [20].

1.2. Main results. Thus, it is natural to wonder which groups have the MLTG
property. Our main result is the following.

Theorem 1.2 (Morse local-to-global). Let X be a metric space with a bounded,
quasi-consistent bicombing. Then X satisfies the MLTG property.

Previously known examples of groups with the MLTG property are hyperbolic
groups, Morse limited groups such as solvable groups, CAT(0) groups, fundamental
groups of closed three manifolds [25] and injective groups [27].

The key ingredient in the proof of Theorem 1.2 is to use the bicombing to trans-
late between scales. Morally, if the path fails to be globally Morse, then one can
transport and shrink this fact to the scale where the path is indeed Morse to get a
contradiction. This is done via using the bicombing to construct paths that avoid a
ball but have length comparable to the radius of the ball. In particular, this allows
us to get a much stricter control on divergence.

Theorem 1.3. Let X be a geodesic metric space equipped with a bounded quasi-
consistent (λ0, κ0)–bicombing. Assume that for every point x ∈ X the ball B(x, κ0)
intersects a bi-infinite (λ0, κ0)-quasi-geodesic from the bicombing (i.e. with k0-
tubular neighbourhood containing longer and longer bicombing lines). If there exists
a sequence nk diverging to infinity such that on that sequence the divergence is
bounded by a linear function then the divergence function is bounded by a linear
function for every value.
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One of the most important things in the study of the divergence is to compare it
with linear functions. In [11] it is proved that a groups has superlinear divergence
if and only if all its asymptotic cones have global cut-points. The importance of
having cut-points in asymptotic cones has been emphasized in [13] and [14]. In
particular it is proved in [13] that if a non-virtually cyclic finitely generated group
G has cut-points in one of its asymptotic cones, then a direct power of G contains
a free non-Abelian subgroup. Note that there are finitely generated groups whose
divergence is not linear but is arbitrarily close to being linear (and in fact is bounded
by a linear function on arbitrary long intervals) [22].

This type of result was previously known, under appropriate assumptions, for
very few quasi-isometry invariants (the Dehn function and the growth function).

1.3. Weak Morse local-to-global property. Being Morse is a condition that
govern how a certain fixed quasi-geodesic behaves with respect to all other quasi-
geodesics with endpoints on it. However, one might relax the condition, and con-
sider quasi-geodesics that are Morse only with respect to quasi-geodesics with fixed
quasi-geodesic constants. This lead to the definition of weak Morse property, where
one needs to verify Morseness only with respect to a single constant.

Then, one can recast Theorem 1.2 in a different light by relaxing the hypotheses
on the bicombing. For this, we define a weak Morse local-to-global (WMLTG) space
to be a space where paths that are locally Morse quasi-geodesics are globally weakly
Morse quasi-geodesics.

Theorem 1.4 (Weak Morse local-to-global). Let X be a metric space with a
bounded, quasi-geodesic combing. Then X satisfies the weak MLTG property.

An immediate consequence, Theorem 1.4 implies that in a space with a bounded
combing locally Morse quasi-geodesic are global quasi-geodesics, which is a result
of independent interest. This result cannot be far from optimal as there are spaces
with bounded quasi-geodesic combings where local quasi-geodesics are not global
quasi-geodesics, for instance non-hyperbolic CAT(0) spaces.

The main reason to introduce the WMLTG property is motivated by the follow-
ing result, that states that undes topological conditions on the Morse boundary,
the weak MLTG property implies the strong one.

Theorem 1.5. Let X be a geodesic metric space satisfying the weak MLTG property
and whose isometry group acts coboundedly on X. If the Morse boundary of X is
σ–compact then X satisfies the MLTG property.

Since He, the second author and the third author [20] showed that a space with
the MLTG property needs to have a σ–compact Morse boundary, we obtain the
following dichotomy.

Corollary 1.6. Let X be a space satisfying the weak MLTG property. Then X
satisfies the MLTG property if and only if the Morse boundary of X is σ–compact.

In general, understanding the topolgy of boundaries is a notoriously hard ques-
tion. For instance, only recently the third author constructed the first example of
a group with non-σ–compact Morse boundary using small cancellation theory [29].
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2. Preliminaries

Throughout the paper, unless otherwise stated, all metric spaces are geodesic.
Let X be a metric space.

Definition 2.1. A (λ, κ)–quasi-geodesic in X, for λ ≥ 1 and κ ≥ 0, is a map
γ : I → X, where I ⊆ R is an interval, such that

1

λ
|t1 − t2| − κ ≤ d(γ(t1), γ(t2)) ≤ λ|t1 − t2|+ κ.

We call a pair of constants (λ, κ), with λ ≥ 1 and κ ≥ 0, a quasi-geodesic pair
of constants, or simply a quasi-geodesic pair.

Given r > 0, the r–neighbourhood of a subset A, i.e. {x ∈ X : d(x,A) ≤ r}, is
denoted by Nr(A). In particular, if A = {a} then Nr(A) = B(a, r) is the closed
r–ball centered at a.

Consider a path p : [a, b] → X.

Notation 2.2. Given a point x ∈ X and a subset A ⊆ X, we write, by abuse of
notation, x ∈ p to mean that x belongs to the image of p, and p ⊆ A to mean that
the image of p is contained in A.

We denote by p−1 the path p−1 : [a, b] → X where p−1(t) = p(b + a − t). We
denote the length of a rectifiable path p by length(p) and the length of its domain,
|b−a|, by Dlength(p). Let u, v ∈ p. We say that x ∈ p lies between u and v if there
are s1 ≤ s2 ≤ s3 in the domain of p such that p(s1) = u, p(s2) = x, p(s3) = v. If
s1 is the smallest parameter so that p(s1) = u and s3 is the largest parameter so
that p(s3) = v we denote by p|uv the restriction of p to [s1, s3] (i.e. the maximal
sub-path of p with image composed of points that lie between u and v) and we call
it the subarc determined by u and v.

Lemma 2.3 (Improved quasi-geodesics [2], Lemma 1.11, [3], Proposition 8.3.4).
Let X be a geodesic metric space. For every (λ, κ)-quasi-geodesic γ : [a, b] → X
there exists a continuous (λ, κ′)-quasi-geodesic γ̄ : [a, b] → X such that

(1) γ(a) = γ̄(a) and γ(b) = γ̄(b);
(2) κ′ = 2(λ+ κ);
(3) length(γ̄|[t,t′]) ≤ k1d(γ̄(t), γ̄(t

′))+k2 for all t, t′ ∈ [a, b], where k1 = λ(λ+κ)
and k2 = (λκ′ + 3)(λ+ κ);

(4) the Hausdorff distance between the images of γ and γ̄ is less than λ+ κ.

We call such a quasi-geodesic γ̄ an improvement of γ. A (λ, κ)–quasi-geodesic is
improved if it is continuous and condition (3) of Lemma 2.3 holds.

Convention 2.4. From now on, all quasi-geodesics are assumed to be improved.

2.1. Quasi-geodesic combings. Consider a metric space X and two constants
λ0 ≥ 1 and κ0 ≥ 0. A (λ0, κ0)–quasi-geodesic (bi)-combing is a way of assigning to
every ordered pair of points (x, y) ∈ X×X, a (λ0, κ0)–quasi-geodesic qxy connecting
them. The quasi-geodesics qxy are called combing lines.
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When needed, we assume the quasi-geodesics to be extended to R by constant
maps.

We say that a (λ0, κ0)–quasi-geodesic combing is bounded if

(2.5) d(qxy1
(t), qxy2

(t)) ≤ κ0d(y1, y2) + κ0,

for all t ∈ R and x, y1, y2 in X.
Similarly, a (λ0, κ0)–quasi-geodesic bicombing is bounded if

(2.6) d(qx1y1
(t), qx2y2

(t)) ≤ κ0 [d(x1, x2) + d(y1, y2)] + κ0,

for all t ∈ R and (x1, y1), (x2, y2) in X ×X.
A (λ0, κ0)–quasi-geodesic bicombing is reversible if

qxy = q−1
yx(2.7)

for all x, y in X.
Given a combing line qxy, we denote its constant speed reparameterization by

q̂xy : [0, 1] → X. A (λ0, κ0)–quasi-geodesic bicombing is called quasi-conical if for
all (x1, y1), (x2, y2) in X ×X and t ∈ [0, 1] we have:

d(q̂x1y1
(t), q̂x2y2

(t)) ≤ λ0 [(1− t)d(x1, y1) + td(x2, y2)] + κ0.

A (λ0, κ0)–quasi-geodesic bicombing is called quasi-consistent if for any combing
line qxy and points z1, z2 in the image of it, we have

dHaus(qxy|z1z2 , qz1z2) ≤ κ0.

2.2. Morse properties. We start with the definition of Morse (quasi-)geodesics,
the central object of the paper. Intuitively, a Morse quasi-geodesic is a geodesic
that is the best way to travel in a certain direction, evidenced by the fact that any
other quasi-geodesic in the same direction cannot deviate too much from it. More
precisely, we have the following definitions.

Definition 2.8. Let (Q, q) be a quasi-geodesic pair and let µ ≥ 0. A quasi-geodesic
γ is (Q, q, µ)–weakly Morse if any (Q, q)–quasi-geodesic η with endpoints γ(s) and
γ(t) satisfies

η ⊆ Nµ(γ|[s,t]).

A stronger version of the Morse property is formulated below. In order to define
it, we need the notion of Morse gauge as introduced in [9].

Definition 2.9 (Morse gauge). A Morse gauge is a function M : R≥1×R≥0 → R≥0

that is non-decreasing in each of the two variables, and is continuous in the second
variable.

As shown in [9], the continuity in the second variable ensures that the M–Morse
stratum ∂M

∗ X is compact in the Morse boundary for all Morse gauges M .

Definition 2.10 (Morse quasi-geodesic). A quasi-geodesic γ is M–Morse, for a
Morse gauge M , if any (Q, q)–quasi-geodesic η with endpoints γ(s) and γ(t) satisfies

η ⊆ NM(Q,q)(γ|[s,t]).

The goal of this paper is to determine when and to what extent local-to-global
properties hold for Morse quasi-geodesics, in the sense of the following definition,
first formulated in [25].
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Definition 2.11. We say that a path p : [a, b] → X satisfies a property (P ) at scale
L (or that p L–locally satisfies (P ), or p is L–locally (P )) if for every t1, t2 ∈ [a, b]
with |t1 − t2| ≤ L the restriction p|[t1,t2] has the property (P ). The quantity L is
called the scale. We say that a path is locally (P ) when it is L–locally (P ) for some
scale L.

A “local-to-global property” is a condition requiring that a path that is L–locally
(P ), for L large enough, is globally (P ′).

The two properties that we consider here are the Morse property (in both stan-
dard and weak form) and the property of being a quasi-geodesic.

Example 2.12. CAT(0) spaces and more generally Busemann spaces (i.e. geodesic
metric spaces with convex distance function) satisfy the local-to-global property for
geodesics: any path that is ϵ–locally a geodesic, for some ϵ > 0, is a geodesic. This
is not the case for CAT(k) spaces, with k> 0, as for instance in the sphere S2 a
maximal circle is locally a geodesic at any scale smaller than the diameter.

When we consider quasi-geodesics, the situation is even more restrictive. Indeed,
Gromov proved that a geodesic metric space has the local-to-global property for all
its quasi-geodesics if and only if it is hyperbolic [17].

Definition 2.13. A metric space X satisfies the Morse local-to-global (MLTG for
short) property if the following holds. For any quasi-geodesic pair (λ, κ) and Morse
gauge M there exists a scale L, a quasi-geodesic pair (λ′, κ′) and a Morse gauge M ′

such that every path that is L–locally an M–Morse (λ, κ)–quasi geodesic is globally
an M ′–Morse, (λ′, κ′)–quasi-geodesic.

The following weakening of the MLTG property also turns out to be relevant.

Definition 2.14 (Weak MLTG). A metric space X satisfies the weak Morse local-
to-global (WMLTG for short) property if the following holds. For every quasi-
geodesic pairs (λ, κ) and (Q, q), and every Morse gauge M there exists a scale L,
a quasi-geodesic pair (λ′, κ′) and a constant µ ≥ 0 such that every path that is L–
locally an M–Morse (λ, κ)–quasi geodesic is globally a (λ′, κ′)–quasi-geodesic that
is (Q, q, µ)–weakly Morse.

The difference between the MLTG property and the WMLTG property is that
the latter allows to say things globally only about being Morse with respect to a
fixed quasi-geodesic pair (Q, q).

2.3. Divergence. The topics of Morse geodesics and acylindrically hyperbolic groups
are closely related to those of divergence functions and to the existence of cut-points
in asymptotic cones. We recall the definitions of the different types of divergence
functions, as introduced in [11, §3]. They all measure the length of minimal paths
joining two points while staying away from a ball around a third point.

We consider the usual relation on the set of functions R+ → R+ , f ⪯C g if and
only if

f(n) ≤ Cg(Cn) + Cn+ C

for some C > 1 and all x. This defines an equivalence relation on the set of
functions R+ → R+ , f ≡C g if f ⪯C g and g ⪯C f that is very relevant when
studying invariance up to quasi-isometry.

When there is no risk of confusion, we no longer mention the constant C in the
index and instead simply write f ⪯ g and f ≡ g.
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Let (X,d) be a geodesic metric space, and let 0 < δ < 1. Let a, b, c ∈ X with
d(c, {a, b}) = r > 0, where d(c, {a, b}) is the minimum of d(c, a) and d(c, b) .

We define div(a, b, c; δ) as the infimum of the lengths of paths connecting a, b
and avoiding the ball B(c, δr) (note that by definition a ball of non-positive radius
is empty). If no such path exists, take div(a, b, c; δ) = ∞.

This function is invariant by quasi-isometries in the following sense: given an
(L,C)-quasi-isometry between two geodesic metric spaces, q : X → Y , for any
three points a, b, c in X,

(2.15) 2Ldiv(a, b, c; δ) + C ≥ div(q(a), q(b), q(c); 2Lδ) ≥ 1

2L
div(a, b, c; δ)− C .

The divergence function Div(n, δ) of the space X is defined as the supremum of
all numbers div(a, b, c; δ) with d(a, b) ≤ n.

Let λ ≥ 2 and n0 ≥ 0. The small divergence function div(n;λ, δ) is defined as
the supremum of all numbers div(a, b, c; δ) with n0 ≤ d(a, b) ≤ n and

(2.16) λd(c, {a, b}) ≥ d(a, b).

Clearly div(n;λ, δ) ≤ Div(n; δ), for every n ≥ n0, λ, δ.
Two more divergence functions, restricting the choice of c, can be defined. For

every pair of points a, b ∈ X, we choose and fix a geodesic [a, b] joining them. The
definitions of the restricted divergence functions do not depend in a significant way
on the choice of the geodesic [a, b]. We say that a point c is between a and b if c is
on the fixed geodesic segment [a, b].

We define Div′(n; δ) and div′(n;λ, δ) in the same way as Div and div, but re-
stricting c to the set of points between a and b. Clearly Div′(n; δ) ≤ Div(n; δ) and
div′(n;λ, δ) ≤ div(n;λ, δ) for every λ, δ.

The divergence functions and the restricted ones are ≡-equivalent. This also
implies that, the functions Div′ and div′ do not depend on the choice of geodesics,
up to the equivalent relation ≡.

Lemma 2.17 ([11], Lemmata 3.10 and 3.11).

(1) For every a, b ∈ X, every δ ∈ (0, 1) and every λ ≥ 2, we have

(2.18)
sup

c∈[a,b]

λd(c,{a,b})≥d(a,b)

div(a, b, c; δ/3) ≤ sup
λd(c,{a,b})≥d(a,b)

div(a, b, c; δ/3)

≤ sup
c∈[a,b]

2λd(c,{a,b})≥d(a,b)

div(a, b, c; δ) + d(a, b).

(2) The same three inequalities are satisfied if we remove the condition λd(c, {a, b}) ≥
d(a, b).

The following sums up the other main properties of divergence functions proven
in [11, §3].

Proposition 2.19. Assume X is one-ended, admits a co-compact action by isome-
tries of a group and every point is at distance less than κ from a bi-infinite quasi-
geodesic. Then the following properties hold.
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(1) The function Div(n, δ) takes only finite values for δ sufficiently small. In
particular, if X is a Cayley graph of a finitely generated one-ended group,
this holds for δ = 1

3 .
(2) Div(n; δ) ≤ div(n; 2, δ) + 2n+O(1).
(3) The function Div(n; δ) is ≡-equivalent to the function div′(n; 2, δ).

In [11, §3] it is also proven that the divergence functions as defined above are
≡-equivalent in an appropriate sense to the version of divergence function defined
by S. Gersten ([16], [15]), and used to study Haken manifolds.

2.4. Divergence and asymptotic cones. For the notion of asymptotic cone, we
refer to M. Gromov [19], further properties and open questions can be found in [10]
and in [13].

Given a metric space (X,d), a sequence (on) of basepoints in it, and (dn) a
sequence of positive numbers diverging to ∞, when building the corresponding
asymptotic cone, the goal is to build a complete metric space that appears as
limit of the sequence of rescaled metric spaces (X, 1

dn
d) with basepoints on. This

is done via the choice of a non-principal ultrafilter which, in some sense, selects
a converging subsequence from the given sequence. The limit thus obtained is
denoted by Conω(X, (on), (dn)).

In what follows, by cut-point we always mean global cut-point.
Recall that, with the terminology of [11], a metric space X is called wide if

none of its asymptotic cones has a cut-point; it is called unconstricted if one of its
asymptotic cones does not have cut-points.

Proposition 2.20 ([11], Lemma 3.17). Let X be as in Proposition 2.19. The
following areb equivalent:

(1) X is wide;
(2) Div(n; 1/4) is bounded by a linear function;
(3) Div(n; δ) is bounded by a linear function for every δ ≤ 1/4;
(4) div(n; 2, 1/4) is bounded by a linear function;
(5) div(n;λ, δ) is bounded by a linear function for some λ and some δ ≤ 1/4.

For a more detailed discussion relating existence of cut-points, divergence and
existence of Morse geodesics we refer to [11].

2.5. Middle recurrence. Often, it will be convenient to work with a characteriza-
tion of the Morse property, introduced in [11, Proposition 3.24] and [12, Proposition
1] and further developed in [1], that we explain below.

Definition 2.21 (t–middle). Let γ be a quasi-geodesic and a, b ∈ γ. For t ∈
(
0, 1

2

)
,

the t–middle of γ|ab is the set of x ∈ γ lying between a, b such that min{d(x, a),d(x, b)} ≥
t · d(a, b). We denote the t–middle of γ|ab as γ|t·ab. When a, b are the endpoints of
γ, we denote the t–middle simply by γ|t.
Definition 2.22. Let γ be a quasi-geodesic and t ∈

(
0, 1

2

)
. We say that the quasi-

geodesic γ is t–middle recurrent if there is a function mt : R+ → R+ so that any
path p with endpoints a, b ∈ γ and length(p) ≤ c · d(a, b) satisfies

p ∩Nmt(c)(γ|t·ab) ̸= ∅.
The function mt is called the t–recurrence function of the path γ.

We say that a quasi-geodesic γ is middle recurrent if it is t–middle recurrent
for some fixed t ∈

(
0, 1

2

)
.
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Note that subpaths of a t–middle recurrent path are t–middle recurrent with
respect to the same recurrence function.

Theorem 2.23 ([1, 11, 12]). Let γ be a quasi-geodesic in a geodesic metric space
X. Then γ is Morse if and only if γ is middle recurrent. Moreover, its recurrence
function can be bounded from above only in terms of its Morse gauge, and vice
versa.

The following lemma is a variation of the theorem above which we will use in
the proof of 6.6.

Lemma 2.24. Let M be a Morse gauge and let (λ, κ) be a quasi-geodesic pair. Let
χ, σ, δ be linear functions. There exist two constants D ≤ ℓ such that the following
holds. If γ is a (λ, κ)–quasi-geodesic which is M–Morse, then there does not exist
a path p with endpoints γ(t1) and γ(t2) satisfying the following:

(1) ℓ ≤ t2 − t1 ≤ σ(ℓ),
(2) length(p) ≤ χ(ℓ),
(3) d(p, γ|[t1+δ(D),t1+ℓ−δ(D)]) ≥ D − κ.

Proof. Assume by contradiction that there exists a path p satisfying (1), (2) and (3).
Let a = γ(t1) and b = γ(t1 + ℓ). Modify p by appending the segment γ−1|[b,γ(t2)].
By Lemma 2.3, we have that the new path p satisfies length(p) ≤ χ′(ℓ) for a linear
function χ′. For large enough ℓ, and since t2 − t1 ≥ ℓ, this implies length(p) ≤
c · d(a, b) for some constant c only depending on χ′ and (λ, κ). By potentially
increasing δ (by an amount that only depends on (λ, κ)) the new path p still satisfies
Condition (3). By Theorem 2.23, there exists t ∈ (0, 1

2 ) and a middle recurrence mt,
both depending only on M , such that γ is mt–middle recurrent. Thus, p intersects
the mt(c)–neighbourhood of the t–middle γt·ab. Choose D as mt(c)+κ+1. If there
exists ℓ such that γ|t·ab ⊆ γ|[t1+δ(D),t1+ℓ−δ(D)], this is a contradiction (3) and hence
concludes the proof.

Lastly, we show how to choose such an ℓ. Observe that the distance between
a and γ|t·[a,b] has a lower bound that grows linearly in ℓ, whereas the Haus-
dorff distance between a and γ|[t1,t1+δ(D)] has a uniform upper bound. A simi-
lar observation for b and γ|[t1+ℓ−δ(D),t1+ℓ] shows that for ℓ large enough γ|t·ab ⊆
γ|[t1+δ(D),t1+ℓ−δ(D)]. □

We conclude with another implication between Morse properties. We show that
if a path is locally weakly Morse, then locally has a property akin to the middle
recurrence for paths formed by quasi-geodesics.

Lemma 2.25. Let X be a geodesic metric space. Let N,C, ε be constants, let
(λ0, κ0), (λ, κ) be a quasi-geodesic pair and let M be a Morse gauge. There exists a
constant D ≥ 0 and a quasi-geodesic pair (Q, q) such that if any path γ is R–locally
a (Q, q,M(Q, q))–weakly Morse (λ, κ)–quasi-geodesic for a constant R ≥ D, then
the following holds. If u = γ(t) and v = γ(s) with |t− s| ≤ R, then every path from
u to v which has length at most CR and is composed of at most N (λ0, κ0)–quasi-
geodesics intersects the εR–neighbourhood of every point of γ|uv.
Proof. Assume that for every n, there exists a (λ, κ)–quasi-geodesic γn which is
(n, n,M(n))–weakly Morse at scaleRn ≥ Dn = M(n, n)n but contains points un, vn
at parametrized distance Rn joined by a path composed of at mostN (λ0, κ0)–quasi-
geodesics and of length at most CRn disjoint from the ball B(mn, εRn) for some
mn ∈ γn|unvn .
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This means that in an asymptotic cone Coneω(X,mn, Rn), the points A = (un)
ω

and B = (vn)
ω can be connected by a path qω = limω(qn) composed of N λ0-

bilipschitz arcs avoiding m = (mn)
ω. In particular, there exists a path p from A

to B which avoids m and hence there exists a simple path from A to B which
avoids m. Let L be the set of geodesics in X and let Lω be the set of ω-limits
of those geodesics. By [11, Lemma 2.3] there exists a simple path p̃ from A to
B which is a piecewise Lω path and avoids m. Finally, by [11, Lemma 2.6 (2)]
there exist constants k and λ such that p̃ = limω pn where each pn is λ–bilibschitz
and a k–piecewise L path. Now, for n ≥ λ we can use that γn is (n, n,M(n, n))–
weakly Morse to get that pn is in the M(n, n)–neighbourhood of γn|unvn . Since
Rn ≥ Dn = M(n, n)n, we have that limω(γn|unvu

) coincides with p̃, a contradiction
that p̃ is disjoint from m. □

3. Globalization of the quasi-geodesic property

In this section, we prove that in a metric space with a bounded combing a
path that is locally quasi-geodesic and Morse at a large enough scale is globally
quasi-geodesic. We start with the following lemma about concatenations of quasi-
geodesics. This is well-known and versions of this lemma have appeared in the
literature (for instance [24]). We provide a proof for completeness.

Lemma 3.1. Let γ be a (λ, κ)–quasi-geodesics segment. Let z1, z2 ∈ X and u1, u2 ∈
γ be such that

(1) every point point x ∈ γ between u1, u2 satisfies d(x, zi) ≥ d(ui, zi).

Then, for all geodesics αi connecting ui and zi, the concatenations α1 ∗ γ|u1u2
and

γ|u1u2 ∗ α2 are (2λ+ 1, κ)–quasi-geodesics. If, moreover, the following condition is
satisfied

(2) d(ui, zi) ≤ θd(u1, u2) for some θ ∈ [0, 1/2);

then the concatenation α1 ∗ γ|u1u2
∗ α2 is a (λ′, κ)–quasi-geodesic, where λ′ =

max
(

λ+1
1−2θ , 2λ+ 1

)
.

Proof. Let η denote the concatenation α1∗γ|u1u2
∗α2, where αi are geodesics joining

ui and zi, parameterized by their length, and let η(si) = ui. By the triangular
inequality, η satisfies the quasi-geodesic upper inequality with constants (λ, κ). In
what follows, we focus on the lower inequality. Consider two points x = η(sx) and
y = η(sy), with sx ≤ sy. If x, y are both contained in one of the three (quasi)-
geodesics composing η, then the lower inequality is satisfied.

Consider now the case x ∈ α1 and y ∈ γ|u1u2
(the case x ∈ γ|u1u2

and y ∈ α2 is
similar).

We have that d(x, y) ≥ d(x, u1), otherwise d(z1, y) < d(z1, u1), contradicting the
second assumption. It follows that d(x, y) ≥ s1 − sx = d(x, u1), which implies that
d(y, u1) ≤ 2d(x, y). We can then write that

sy − s1 ≤ λd(u1, y) + λκ ≤ 2λd(x, y) + λκ,

and therefore that

sy − sx = sy − s1 + s1 − sx ≤ 2λd(x, y) + λκ+ d(x, y) = (2λ+ 1)d(x, y) + λκ.

This concludes the case of a single projection.
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Assume now x ∈ α1, y ∈ α2. We have:

|sx − sy| ≤ 2θd(u1, u2) + |s1 − s2| ≤
≤ 2θd(u1, u2) + λd(u1, u2) + κ = (2θ + λ)d(u1, u2) + κ.

As d(x, y) ≥ (1− 2θ)d(u1, u2), we conclude that

|sx − sy| ≤
2θ + λ

1− 2θ
d(x, y) + λκ ≤ λ+ 1

1− 2θ
d(x, y) + λκ.

□

We recall a basic fact about quasi-geodesics we are going to need in the following
theorem. We include a proof to emphasize the linear dependence of the constants.

Lemma 3.2. Let γi, i = 1, 2, be two (λ, κ)–quasi-geodesic segments with endpoints
at distance d. Then for all µ ≥ d there exists µ′ = (1+ 2λ2)µ+ λκ+ κ such that if
γ1 ⊆ Nµ(γ2) then γ2 ⊆ Nµ′(γ1).

Figure 1. Proof of Lemma 3.2

Proof. Declare an order on γ2 by ordering its endpoints and call them a and b.
We will bound the diameter of the connected components of γ2 \ Nµ(γ1). Con-
sider the longest such component, and let x1, x2 be its endpoints. Observe that
there needs to be points y1 before (or equal to) x1, y2 after (or equal to) x2 and
z ∈ γ1 such that d(yi, z) ≤ µ. If not, γ1 could be covered by the closed disjoint
sets Nµ(γ2|ax1)⊔Nµ(γ2|x2b), contradicting the assumption that quasi-geodesics are
continuous. Thus, d(y1, y2) ≤ 2µ, and hence d(m, {y1, y2}) ≤ λ(2λµ+κ)+κ for all
m ∈ γ2 between y1, y2, yielding that γ2 ⊆ Nµ′(γ1) where µ

′ = λ(2λµ+κ)+κ+µ. □

Lemma 3.3. Let X be a geodesic metric space with a bounded (λ0, κ0)–quasi-
geodesic combing. For every λ ≥ 1 and κ ≥ 0, and for every µ ≥ 0 there exists
D ≥ 0 and µ′ ≥ 0 such that every continuous path p that is a (λ, κ)–quasi-geodesic
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(2λ0 + 2, κ0, µ)–weakly Morse at scale D is contained in the µ′–neighbourhood of
the combing line between its endpoints.

Proof. We can assume that p is parameterized as p : [0, a] → X for some a. Let
k = ⌈a⌉ and let qi be the combing line between p(0) and p(i) for i < k, and qk be
the combing line between p(0) and p(a).

Write µ′ = θD and assume that p is not in the θD–neighbourhood of qk. By a
(coarse) continuity argument there exists qi such that the corresponding subpath
p|[0,i] is in the θD + O(1)–neighbourhood of qi but not in the θD–neighbourhood
of qi.

We fix such a qi and from now on we abuse notation and simply denote qi and
p|[0,i] as q and p, respectively. Let p(s) be a point at distance at least θD from q. Let
ρ ∈ (0, 1/2) be another small constant to be determined. Let t1 = max(0, s− ρD)
and t2 = min(a, s + ρD). We can assume that a ≥ ρD and hence D ≥ 2ρD ≥
t2 − t1 ≥ ρD.

For i = 1, 2, let ui ∈ q be a closest point to p(ti). Since d(ui, p(ti)) ≤ θD+O(1),
we have that

d(u1, u2) ≥ d(p(t1), p(t2))− 2θD − 2O(1) ≥ (t2 − t1)

λ
− κ− 2θD − 2O(1)

≥
(ρ

λ
− 2θ

)
D − κ− 2O(1).

Here we used that p is D–locally a (λ, κ)–quasi-geodesic. Whence d(ui, zi) ≤
1
6d(u1, u2) if θ < ρ

8λ and D is large enough. By Lemma 3.1, it follows that if αi are
geodesics connecting p(ti) to ui, then the concatenation γ = α1 ∗ q|u1u2

∗ α2 is a
(λ′

0, κ0)-quasi-geodesic, where λ
′
0 = 2λ0+2, joining two points on p at parameterized

distance less than D, implying that γ is in the µ–neighbourhood of p|t1t2 . By
Lemma 3.2, we consequently have that p|[t1,t2] and in particular p(s) is in the r–
neighbourhood of γ for some r only depending on µ, λ0, κ0, λ and κ. For µ′ = θD
larger than r, p(s) is not in the r neighbourhood of α1 and α2 and hence not in the
r–neighbourhood of q, a contradiction. □

Remark 3.4. If a combing line q has the same endpoints as the quasi-geodesic γ
of Lemma 3.3, by Lemma 3.2 there exists µ′′ = µ′′(λ, κ, λ0, κ0, µ) such that

dHaus(γ, q) ≤ µ′′.

Lemma 3.5. Let X be a geodesic metric space. Then for each quasi-geodesic pair
(λ, κ), (λ0, κ0) and constant r there exists a scale D and quasi-geodesic constants
(λ′, κ′) such that if p is D–locally a (λ, κ)–quasi-geodesic contained in the r neigh-
bourhood of a (λ0, κ0)–quasi-geodesic γ, then p is a (λ′, κ′)–quasi-geodesic.

Proof. Since the statement for paths p with unbounded domain follows directly
from the statement for paths p with bounded domain, we can and will assume
that the domain of p is bounded. By increasing r a uniform amount (and possibly
passing to a subsegment of γ) we can assume that the closest point projections of
the endpoints of p on γ are exactly the endpoints of γ.

For each i ≥ 0 where defined, let xi = p
(
iD2

)
and let yi = γ(si) be a closest

point projection of xi onto γ. Since p is a D–local quasi-geodesic, the map i 7→ xi

satisfies the upper coarse Lipschitz inequality. We focus on the lower one. Since p
is a quasi-geodesic at scale D, |si+1 − si| ≤ D/c− c for some constant c depending
on r, (λ, κ) and (λ0, κ0) but not D.
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By the choice of parameterization, we can assume that s1−s0 ≥ 0. We will show
inductively that for large enough D, si+1 − si ≥ 0 for all i and hence si+1 − si ≥
D/c− c, which concludes the proof since it yields a linear lower bound on the lower
coarse Lipschitz inequality for p.

Assume that si − si−1 ≥ 0. If si−1 ≤ si+1 ≤ si, then by Lemma 3.2, there exists
(i− i)D2 ≤ t ≤ iD2 such that d(p(t), γ(si+1)) ≤ r′, where r′ depends on r but not on

D. Consequently, d(p(t), p((i+ 1)D2 )) is bounded by a constant independent of D.
For large enough D, this contradicts p being a (λ0, κ0)–quasi-geodesic at scale D.

Similarly, if si+1 ≤ si−1 ≤ si we get a contradiction by replacing the roles of
(i − 1) and (i + 1). Therefore, we have to have si+1 > si, which concludes the
induction and hence the proof. □

Combining Lemmas 3.3 and 3.5, and Remark 3.4 we obtain the following.

Theorem 3.6. Let X be a geodesic metric space with a bounded (λ0, κ0)–quasi-
geodesic combing. For every quasi-geodesic pair (λ, κ) and µ ≥ 0, there exists a
scale D ≥ 0, and quasi-geodesic constants (λ′, κ′) such that every path p that D–
locally is a (λ, κ)–quasi-geodesic that is also (2λ0 + 2, κ0, µ)–weakly Morse, is a
global (λ′, κ′)–quasi-geodesic.

Moreover, for every pair of points u and v in the image of p, the subpath p|uv and
the combing line quv are within Hausdorff distance at most µ′′ = µ′′(λ, κ, λ0, κ0, µ)
of each other.

4. Path systems

In order to establish that a certain geodesic is Morse, we will show that is has
some contracting property with respect to a special set of paths, which in our case
are, unsurprisingly, going to be related to combing lines. This line of reasoning was
developed in [26].

Definition 4.1 ([26, Definition 2.1]). A path system P in X is a collection of
(κ0, λ0)-quasi-geodesics in X, for some quasi-geodesic constants (κ0, λ0), such that:

(1) any subpath of a path in P is in P,
(2) all pairs of points in X can be connected by a path in P.

Elements of P will be called special paths, and we denote a special path between
x, y by hxy.

Definition 4.2 ([26, Definition 2.2]). A subset A ⊆ X will be called P–contracting
with constant C if there exists a map πA : X → A such that

(1) d(x, πA(x)) ≤ C for each x ∈ A,
(2) for each x, y ∈ X, if d(πA(x), πA(y)) ≥ C , then for any special path hxy

from x to y we have d(hxy, πA(x)) ≤ C, d(hxy, πA(y)) ≤ C.

Note that a subset that is P–contracting with constant C is also P–contracting
with constant C ′, for every C ′ ≥ C.

Theorem 4.3 ([26, Lemma 2.8 (1)]). Let P be a path system in the metric space
X. For every C there exists D so that if A ⊂ X is P–contracting with constant
C, then any (C,C)–quasi-geodesic with endpoints in A is contained in ND(A). In
particular, if γ is a quasi-geodesic which is P–contracting with constant C, then γ
is M–Morse for some Morse gauge M only depending on C, P and X.
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In what follows, we consider the path system given by all the combing lines of
a quasi-consistent quasi-geodesic bicombing, their subpaths and their inverses. We
use the notation qxy to denote the combing line from x to y and hxy to denote a
special path from x to y (which can be a combing line, a subpath of a combing line,
or an inverse of the former).

Let h in P be a special path and let qxy be a combing line with endpoints on h.
We say that qxy goes in the same direction as h if there exists x′, y′ ∈ X such that
one of the following holds

• h is a subsegment of qx′y′ and there exists s ≤ t such that x = h(s) and
y = h(t).

• h is a subsegment of q−1
x′y′ and there exists s ≥ t such that x = h(s) and

y = h(t).

Quasi-consistency of the bi-combing implies that if qxy goes in the same direction
as h, then it is contained in the 2κ0–neighbourhood of h.

The following Lemma extends [23, Lemma 7.1] to the case of spaces with bi-
combings.

Lemma 4.4 (Circumnavigation Lemma). Let X be equipped with a bounded quasi-
consistent (λ0, κ0)–quasi-geodesic bicombing. Let x1, . . . , xn be distinct points in
X, and consider paths αi between xi−1, xi (indices taken mod n), special paths with
respect to the combing path system. Suppose that there is a point m ∈ α1 so that the
ball B(m,R) is disjoint from αi for all i ̸= 1. Let a and b be the first respectively
last point of α1 intersecting B(m,R). There exists a constant c depending only on
(λ0, κ0) and a path p from a to b of length length(p) ≤ cn(R + κ0) that avoids the
ball B(m,R−3(κ0+1)). Moreover, p is the concatenation of at most 6n+6 special
paths.

Figure 2. Proof of Lemma 4.4

Proof. Define α′
1 = α1|[b,x2], α

′
n+1 = α1|[x1,a] and α′

i = αi for all 2 ≤ i ≤ n. Note
that for all 1 ≤ i ≤ n+ 1, α′

i is a subsegment of a combing line or the inverse of a
combing line and d(α′

i,m) ≥ R. Define

α = α′
1 ∗ α′

2 ∗ . . . ∗ α′
n+1.
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Again, we have that d(α,m) ≥ R. Let I = [0, T ] be the domain of α.
Next, define t1 = 0 and y1 = α(t1) = b. For i ≥ 1, inductively define ti+1 to be

the minimal index satisfying ti ≤ ti+1 ≤ T and

d(qyiα(ti+1),m) ≤ R− κ0 − 1, if i is even,

d(qα(ti+1)yi
,m) ≤ R− κ0 − 1, if i is odd.

Denote the path qyiα(ti+1) (respectively the path qα(ti+1)yi
) by qi if i is even (i is

odd).
If no such index exists, define ti+1 = T . Define yi+1 = α(ti).
Note that by boundedness of the combing and minimality of ti+1, we have that

d(qyiyi+1
,m) ≥ R − 2κ0 − 2. Assume that yi, yi+1 and yi+2 all lie on α′

j for some
j. By the quasi-consistency of the bicombing, and because d(α′

i,m) ≥ R we know
that at least one of qi and qi+1 goes in the same direction as α′

j , implying that
it is contained in the κ0–neighbourhood of α′

j , which implies that at least one of
qi, qi+1 does not intersect the R − κ0 − 1 ball around m. Hence, unless yi+2 = a,
yi+2 cannot lie on α′

j if yi lies on α′
j . Consequently, y2n+2 = a.

Next, for 1 ≤ i ≤ 2n+ 1, let zi be a point on qi with

R− 2κ0 − 2 ≤ d(zi,m) ≤ R.

Such a point always exists by construction. Further, assume that z1 = b and
z2n+1 = a.

Claim 1. There exists a constant c only depending on (κ0, λ0) such that for each
1 ≤ i ≤ n there exists a path pi from zi to zi+1 of length length(pi) ≤ c(R + κ0)
and d(m, pi) ≥ R− 3κ0 − 2.

Clearly, the claim concludes the proof.
Proof of Claim 1 We prove the claim in the case where i is even. The case where

i is even works analogously by changing the order of the endpoints on the defined
paths q and q′. First note that d(zi, zi+1) ≤ d(zi,m) + d(m, zi+1) ≤ 2R. Denote
qziyi+1 by q and qzi+1yi+1 by q′. Since i is even, qi and q (respectively qi+1 and q′)
go in the same direction. Hence by consistency,

d(m, q) ≥ d(m, qi)− κ0 ≥ R− 3κ0 − 2.

Similarly, by consistency and reversibility, we have that

d(m, q′) ≥ d(m, qi+1)− κ0 ≥ R− 3κ0 − 2.

By boundedness, d(q(t), q′(t)) ≤ 2κ0R + κ0 for all t. By the triangular inequality,
there is c1 = c1(λ0, κ0) such that if two points u, v satisfy d(u, v) ≤ 2κ0R+ κ0 and
d(m, {u, v}) ≥ c1(R+κ0), then d(quv,m) ≥ R−3κ0−2. Moreover, given c1 we can
find cj = cj(c1, λ0, κ0), j = 2, 3, such that if γ is a (λ0, κ0)–quasi-geodesic, then

c3(R+ κ0) ≥ d(γ(0), γ(c2(R+ κ0)) ≥ c1(R+ κ0) +R.

Now we construct the path pi. If c2(R+ κ0) is not in the domain of q, then by 2.3
the path

pi = q ∗ (q′)−1

Satisfied the desired criteria. Otherwise, let u = q(c2(R + κ0)) and v = q′(c2(R +
κ0)). Since d(q(0),m) ≤ R, the triangular inequality and the choice of the constants
above yields d(quv,m) ≥ R. In particular, the path

pi = q|[zi,u] ∗ quv ∗ (q
′|[zi+1,v])

−1
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Figure 3. Using the circumnavigation Lemma.

satisfies d(m, pi) ≥ R− 3κ0 − 2. Further, by Lemma 2.3 length(pi) ≤ c(R+ κ0) for
a constant c depending only on (λ0, κ0). ■

As there are at most 2n+ 2 points zi, and since the paths pi constructed in the
lemma are the concatenations of at most 3 segments, we get the results. □

We are now ready to prove the main result of the section.

Theorem 4.5. Let X be a geodesic metric space equipped with a bounded quasi-
consistent (λ0, κ0)–bicombing. Then X satisfies the MLTG property.

Proof. Let M be a Morse gauge and (λ, κ) be quasi-geodesic constants. By Theo-
rem 3.6, there exists L′ ≥ 0 and (λ′, κ′) such that all L′–locally M–Morse (λ, κ)–
quasi-geodesics γ are global (λ′, κ′)–quasi-geodesics. It is left to prove that there
exists a Morse gauge M ′ and L ≥ 0 such that any (λ′, κ′)–quasi-geodesic which
is L–locally M–Morse is globally M ′–Morse. In light of Lemma 3.3, it suffices to
show this if γ is a combing line.

Let P be the combing path system. By Theorem 4.3 it suffices to construct a
projection π : X → γ and show that γ is P–contracting with constant C, where C
does not depend on γ.

Choice of projection. Let x ∈ X and let τ(x) be the first point on qxx0 with
d(τ(x), γ) ≤ D. Define π(x) as a point on γ with d(π(x), τ(x)) ≤ D.

Claim 2. For large enough D, γ is P–contracting with constant C, where C does
not depend on γ.

Proof of Claim. If x ∈ γ, then τ(x) = x, so by the definition of π, we have that
d(x, π(x)) ≤ D. So for C ≥ D, 4.2 (1) holds.

It remains to show 4.2 (2). Assume that 4.2 (2) does not hold. That is, there
exists a path β ∈ P from x to y such that

d(π(x), π(y)) ≥ C(4.6)

and such that without loss of generality,

d(β, π(x)) ≥ C.(4.7)
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Now consider the 6-gon α1, . . . , α6 with sides

α1 = γ|[π(y),π(x)], α2 = qπ(x)τ(x),

α3 = qx0x|[τ(x),x], α4 = β,

α5 = qyx0
|[y,τ(y)], α6 = qτ(y)π(y).

Let z be a point on α1 with d(z, π(x)) = C/2. By the definition of π, we have
that d(z, α3) ≥ D and d(z, α5) ≥ D. If C/4 ≥ D, then d(α4, z) ≥ D by (4.7).
Further, choosing C large enough compared to D we have that diam(α2) ≤ C/4
and diam(α6) ≤ C/4 and hence d(α2, z) ≥ C/4 ≥ D by the choice of z and
d(α6, z) ≥ C/4 ≥ D by (4.6).

This allows us to apply Lemma 4.4 with m = z and R = D to get a, b on γ and
a path p from b to a which does not intersect the D − 3(κ0 + 1)–neighbourhood of
z, and which is a concatenation of at most 42 special paths. Further, the length of
p is linearly bounded in D. For large enough D, we have that D/2 ≥ 3(κ0 +1) and
hence p does not intersect the D/2 neighbourhood of z. Lemma 2.25 shows that
for large enough D and L, such a path cannot exist. This concludes the proof. □

5. Linearity of divergence

A bi-product of Lemma 4.4 is that linearity of the divergence on a sequence
diverging to infinity implies linearity of the divergence.

This type of result was previously known, under appropriate assumptions, for
very few quasi-isometry invariants (the Dehn function and the growth function).
Same as for the other two invariants, the above translates into a result of the type:
a property known for one asymptotic cone propagates to all asymptotic cones.

Theorem 5.1. Let X be a geodesic metric space equipped with a bounded quasi-
consistent (λ0, κ0)–bicombing. Assume that for every point x ∈ X the ball B(x, κ0)
intersects a bi-infinite (λ0, κ0)-quasi-geodesic from the bicombing (i.e. with k0-
tubular neighbourhood containing longer and longer bicombing lines). If there exists
a sequence nk diverging to infinity such that on that sequence the divergence is
bounded by a linear function then the divergence function is bounded by a linear
function for every value.

Proof. Since all the divergence functions are equivalent, we have a choice on the
function to use for the hypothesis and the one to use for the conclusion. Thus,
we assume that Div(nk, δ) ≤ Cnk, for δ > 0 smaller enough compared to the
other constants, for instance δ < (10(λ0 + κ0 + 1))−2, and we aim to prove that
div′(n, 2, δ) ≤ C ′n for every n. Consider a pair of points a, b at distance 2n and
m a mid-point on a geodesic joining a and b, so that d(m, {a, b}) = n. Without
loss of generality, we can assume that n is much larger than the combing constants
λ0, κ0. First, if there is a combing line between a, b that avoids the ball B(m, δn),
we are done. So, suppose it is not the case, and let m′ be a point on qab closest
to m. Observe that the ball of radius 2nδ around m′ contains the ball of radius
nδ around m. Our strategy will be to use Lemma 4.4 to find a path of controlled
length avoiding B(m′, 2nδ)

Let γ be a bi-infinite (λ0, κ0)-quasi-geodesic bicombing intersecting B(a, κ0) and
γ′ be a bi-infinite (λ0, κ0)-quasi-geodesic bicombing intersecting B(b, κ0). Up to
reparametrization, we can assume γ(0) ∈ B(a, κ0) and γ′(0) ∈ B(b, κ0). Consider
the rays γ|[0,∞) and γ|[0,−∞). For δ > 0 small enough and since d({a, b}) = n, we
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cannot have that both of those rays intersect B(m′, 2δn+5κ0), so let ρ be one such
ray that does not intersect B(m′, 2δn+5κ0). Likewise, select ρ

′ to be a ray between
γ′|[0,∞) and γ′|[0,−∞) that does not intersect B(m′, 2δn+ 5κ0). Let k be such that
nk ≥ n. By moving along ρ and ρ′ we can find two points x and y at distance nk.
Since Div(nk, δ) ≤ Cnk, we can find a path p of length at most Cnk that connects
x, y while avoiding a ball of radius nkδ around m′. Without loss of generality, p
is parametrized as p : [0, T ] → X with p(0) = x and p(T ) = y. Inductively define
parameters si ∈ [0, T ] by setting s0 = x and defining si to be the highest value
such that d(p(si−1), p(si)) = θnk for a small θ > 0 that we will describe shortly, or
si = T otherwise. Let zi = p(si) and consider a combing line qi = qzizi+1

. There
are N = N(λ0, κ0) and θ = θ(λ0, κ0) so that if nk ≥ N , then

dHaus(qi, p([si, si+1])) ≤
1

2
δnk − 3(κ0 + 1).

Then the concatenation α = q0 ∗ · · · ∗ qr is such that

(1) r ≤
⌈
C
θ

⌉
,

(2) α connects x and y,
(3) dHaus(α, p) ≤ 1

2δnk − 3(κ0 + 1).

By choosing nk ≥ 3n, and since we assumed n to be large compared to the bicomb-
ing constants, we get that α is disjoint from B(m′, 2nδ + 3κ0).

Let σ be a combing line between ρ(0) and x if ρ = γ|[0,∞) or a combing line
between x and ρ(0) if ρ = γ|[0,−∞). By the choice of ρ, the combing line σ is disjoint
from B(m′, 2nδ+3κ0). Define analogously σ′ between ρ′(0) and y or between y and
ρ′(0). Finally, consider combing lines between γ(0), a and b, γ′(0), and the combing
line qab. The polygonal line α and the above combing lines form a polygon where
all but one sides are disjoint from B(m′, 2nδ+3(κ0 +1)), where the disjointedness
is again obtained invoking that n is large compared to λ0, κ0, and δ is small enough.
Note that this is a

(⌈
C
θ

⌉
+ 6

)
-gon. We can then apply Lemma 4.4 to find two points

a′, b′ ∈ qab outside B(m′, 2δn) and a path η connecting them and and avoiding
B(m′, 2δn). Thus, we can find a path connecting a, b and avoiding B(m′, 2δn) of
length bounded above by ℓ(η)+ ℓ(qab) ≤ c

(⌈
C
θ

⌉
+ 6

)
(2nδ+3(k0+1))+k1n+k2 ≤

C ′n, for some C ′ = C ′(λ0, κ0, δ), where k1 and k2 are coming from Lemma 2.3 and
depend only on λ0, κ0. As argued above, such a path will avoid B(m, δn). □

6. Bicombings and weak Morse-local-to-global

The main goal of this section is to prove Theorem 6.6, namely showing that a
metric space equipped with a bounded combing needs to satisfy the weak Morse
local-to-global property.

In the proof of the theorem we use the following technical lemmas.

6.1. Exit point and technical lemmas.

Lemma 6.1. Let (λ, κ) be quasi-geodesic constants. There exists a linear function
δ such that the following holds. Let γ1 : [0, T1] → X, γ2 : [0, T2] be (λ, κ)-quasi-
geodesics such that γ2 ⊆ ND(γ1). Let xi = γi(ti), yi = γi(si) be points such that
d(x1, x2) ≤ D and d(y1, y2) ≤ D. Assume that t1 ≤ s1 and t2 ≤ s2. Then
d(γ2|[t2,s2], γ1(t)) > D for all t ∈ [0, T1]− [t1 − δ(D), s1 + δ(D)].

Proof. We start by proving that d(γ2|[t2,s2], γ1(t)) > D for t ∈ [0, t1− δ(D)]. Let k2
be the largest parameter such that there exists t0 ≤ t1 with d(γ2(k2), γ1(t0)) ≤ D.



COMBINGS AND MLTG 19

Let z2 = γ2(k2). By continuity, there exists k1 ≥ t1 such that d(z2, γ1(k1)) ≤ D.
In particular, d(γ1(t0), γ1(k1)) ≤ 2D, and hence k1 − t0 ≤ 2λD + κ. Using that,
t0 ≤ t1 ≤ k1 the fact that γ1 and γ2 are (λ, κ)–quasi-geodesics and the triangle
inequality, we get that k2 − t2 are linearly bounded from above and hence there
exists a linear function ϵ such that

d(γ2(s), x2) ≤ ϵ(D),

for all t2 ≤ s ≤ k2. If t < t1 − λ(ϵ(D) + 2D) + κ. Then d(γ1(t), x1) ≥ ϵ(D) + 2D,
so d(γ1(t), x2) ≥ ϵ(D) + D, and so we conclude that d(γ1(t), γ2|[t2,s2]) ≥ D. The
proof for t ∈ [t2 + δ(D), T ] is analogous. □

Given two quasi-geodesics starting at the same point, but ending far away from
each other, we want to define the point at which they “exit their D–neighbourhoods
for sufficently” long. This is made precise in the following definition of an exit point.
The following results then describe the properties of those exit points.

Definition 6.2. Let γ : [0, T ] → X and η : [0, T ′] → X be (λ, κ)–quasi-geodesics
starting at a point x = γ(0) = η(0). We say that a point γ(t) on η is a (D, ℓ)–exit
point of (η, γ) if there exists a constant te ∈ [0, T ] with d(y, γ(te)) ≤ D and such
that

d(η|[t,T ′], γ|[0,te+ℓ]) ≥ D.

We call a minimal such te the exit-moment.

Figure 4. Definition of (D, ℓ)–exit point.

Observe that if d(η(T ′), γ) > D, then, by continuity, a (D, ℓ)–exit point exists,
for example the last point on η in the D–neighbourhood of γ.

The following lemma states that if te is the minimal exit moment, then γ|[0, te]
stays close to η.
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Lemma 6.3. Using the notation of Definition 6.2. If y = η(t) is a (D, ℓ)–exit point
of (η, γ) that minimizes the exit moment te, then for every s with 0 ≤ s ≤ te there
exists s′ with s ≤ s′ ≤ s+ ℓ such that d(γ(s′), η) ≤ D

Proof. Let t′ ∈ [0, T ′] be minimal such that d(η|[t′,T ′], γ|[0,s+ℓ]) ≥ D. Such a
point exists since η(t) is a (D, ℓ)–exit point with te ≥ s. By continuity of η,
d(η(t′), γ|[0,s+ℓ]) = D. Let 0 ≤ u ≤ s+ ℓ be minimal such that d(η(t′), γ(u)) = D.
If u < s, then η(t′) is a (D, ℓ)–exit point with exit moment u < te, contradicting
the minimality of te. Hence s ≤ u ≤ s + ℓ, implying that the lemma holds, since
for example s′ = u works. □

Corollary 6.4. Using the notation of Definition 6.2 and fixing quasi-geodesic con-
stants (λ, κ). There exists a linear function ν such that the following holds. If η(t)
is a (D, ℓ)–exit point of (η, γ) (which are both (λ, κ)–quasi-geodesics) that minimizes
the exit moment te, then

dHaus(γ([0, te]), η|[0,t]) ≤ ν(ℓ+D).

Proof. By Lemma 6.3, for every s ∈ [0, te] we have that d(γ(s), η) ≤ D + λℓ + κ.
Lemma 3.2 concludes the proof. □

The following lemma shows that if a point on γ which is before the minimal exit
moment and a point on η are close, then the start of γ stays far away from the tail
of η.

Lemma 6.5. Using the notation of Definition 6.2 and fixing quasi-geodesic con-
stants (λ, κ). There exists a linear function ϵ such that the following holds. If η(t) is
a (D, ℓ)–exit point of (η, γ) (which are both (λ, κ)–quasi-geodesics) that minimizes
the exit moment te, and 0 ≤ s ≤ te is a constant such that d(γ(s), η(t′)) ≤ D for
some t′ ∈ [0, t], then

d(γ|[0,s−ϵ(D+ℓ)], η|[t′,T ′]) ≥ D

Proof. By Corollary 6.4 we have dHaus(γ([0, te]), η|xy) ≤ ν(D + ℓ). Let D′ =
ν(D + ℓ) + D. By Lemma 6.1, with the pair {γ(s), η(t′)} having the role of
{xi} in the Lemma and {γ(te), η(t)} the role of {yi}, there exists δ such that
d(η|[t′,t], γ|[0,s−δ(D′)]) ≥ D′. Since D′ ≥ D, and since the definition of exit point
allows us to estimate d(η|[t,T ′], γ([0, s− δ(D′)])), the result follows. □

We are now ready to prove Theorem 6.6, which is the main theorem of this
section.

Theorem 6.6. Let X be a geodesic metric space equipped with bounded (λ0, κ0)–
quasi-geodesic combing. Let (λ, κ) and (Q, q) be quasi-geodesic pairs, and let M be
a Morse gauge. There exist constants L,N such that the following holds. Let γ
be a (λ, κ)–quasi-geodesic that is M–Morse at scale L. Then γ is (Q, q,N)–weakly
Morse.

Proof. In this proof we can and will assume that λ ≥ λ0 and κ ≥ κ0.
Outline of the proof: We will show that for large enough constants N1, N2

the following holds. If γ is an L-locally M–Morse (λ, κ)–quasi-geodesic, then every
(Q, q)-quasi-geodesic with endpoints in the closed N1-neighbourhood of γ stays in
the N2-neighbourhood of γ.

We do so by contradiction, assuming that the property does not hold and then
finding a path p with endpoints on γ which contradicts Lemma 2.24.



COMBINGS AND MLTG 21

We define L, ℓ,D as follows.

• δ1, σ1, χ1 are the linear function from the proof of Claim 3
• δ, σ are the linear functions defined directly before Claim 5.
• χ is the function from Claim 6
• δ′ ≥ δ1, δ, σ

′ ≥ σ1, σ, χ
′ ≥ χ1, χ are linear functions.

• D, ℓ are the constants from Lemma 2.24 applied to δ′, σ′, χ′.
• L = σ(ℓ).

The constants N1 and N2 have to be large compared to the other constants
(and N2 has to be large compared to N1). Throughout the proof, we outline the
inequalities that N1 and N2 have to satisfy.

Let γ be a (λ, κ)–quasi-geodesic which is L–locally M–Morse. Assume that there
exist (Q, q)–quasi-geodesics with endpoints in the N1–neighbourhood of γ which do
not stay in the N2–neighbourhood of γ. Let η be the shortest (in terms of length
of its domain) such (Q, q)-quasi-geodesic. Observe the following; since η is the
shortest such quasi-geodesic, we have d(η, γ) ≥ N1.

Let z, z′ be the endpoints of η and let x and x′ be the closest points on γ to z
and z′ respectively. We may assume that γ : [0, T ] → X and η : [0, T ′] → X with
γ(0) = x, γ(T ) = x′, η(0) = z and η(T ′) = z′.

Let n(η) = ⌊T/(2ℓ)⌋. For each 0 ≤ i ≤ n(η), define

zi = η(iT ′/n(η)).

Fix a geodesic [z′, x′] between z′ and x′. Define n = n(η) + ⌊length([z′, x′]) −D⌋.
For each n(η) + 1 ≤ i ≤ n define

zi = [z′, x′](i− n(η)).

Further for all 0 ≤ i ≤ n, let qi : [0, Ti] be the combing line from x to zi. Let
yi = qi(si) be a (D, ℓ)–exit point with minimal exit moment ti and let xi = γ(ti).

Figure 5. Setup for proof of Theorem 6.6

Claim 3. There exists a constant c1 only depending on N1, κ, λ, ℓ,D (but not N2)
such that t0 ≤ c1 and tn ≥ T − c1.
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Proof of Claim 3: We have that d(x, z0) = N1. Thus Dlength(q0) ≤ λN1 +
λκ ≤ 2λN1 and hence d(x, q0(t)) ≤ λ2λN1 + κ ≤ 3λ2N1 for all t. Consequently, Dlength(qn) is the

domain length of qn,
we used N1 ≥ λκ

d(γ(t0), x) ≤ D + 3λ2N1 ≤ 4λ2N1, which implies that t0 ≤ 4λ3N1 + λκ = c1.used N1 ≥ D
We next show that T − tn ≤ σ1(ℓ) by arguing that if it was not the case then

we could construct a path p contradicting Lemma 2.24. Here σ1 denotes a linear
function which we detrmine later. Let qn+1 be the combing line from x to x′. By
boundedness, the Hausdorff distance between qn and qn+1 is at most λ0(D+1)+κ0.
By Remark 3.4, there is µ depending only on the above constants such that the
Hausdorff distance between γ and qn+1 is at most µ. Consequently, there exists
a point y on qn with d(γ(tn + σ1(ℓ)), y) ≤ µ + κ0(D + 1) + κ0. If we define
σ1(ℓ) = ℓ + δ(µ + κ0(ℓ + 1) + κ0), where δ is the function from Lemma 6.1, then
Lemma 6.1, implies that y ∈ qn|ynzn . Consider the path p = [xn, yn] ∗ qn|yny ∗
[y, γ(tn+ℓ)]. By Lemma 2.3 we have that length(p) ≤ χ1(ℓ) for a linear function χ1

only depending on κ0, λ0, κ, λ and µ. As the distance between xn, yn and y, γ(tn+ℓ)
is uniformly bounded in terms of D and the above constants and d(γ, qn|yny) ≥ D,
there is a linear function δ1 such that p does not intersect the D–neighbourhood of
γ|[tn+δ1(D),tn+ℓ−δ1(D)]. The choice of D and ℓ show that this is a contradiction to
Lemma 2.24. ■

Since η is a (Q, q)–quasi-geodesic, requiring that N2 is large compared to N1 (and
hence large compared to κ, λ, ℓ and (Q, q) we can guarantee that n(η) is large, or in
other words, that 2c1/n and (n− n(η))/n(η) are as small as we like, in particular,
we can assume that

2c1/n < ℓ/3,(6.7)

n ≤ 3n(η)

2
.(6.8)

Claim 4. There exists 0 ≤ i ≤ n− 1 such that ti+1 − ti > ℓ.

Proof of Claim 4 Claim 3 implies that
∑n−1

i=0 ti+1 − ti ≥ T − 2c1. Thus, there
exists 0 ≤ i ≤ n− 1 such that ti+1 − ti ≥ T/n− 2c1/n. By (6.7) and (6.8),

T

n
− 2c1

n
>

2T

3n(η)
− ℓ

3
≥ 4ℓ

3
− ℓ

3
≥ ℓ.

■
We now want to bound d(zi, zi+1). For i ≥ n(η) we have that d(zi, zi+1) = 1,

so be proceed to bound d(zi, zi+1) for i < n(η). To do this, we first want to bound
T ′, i.e. the length of the domain of η : [0, T ′] → X. Observe that T ≤ 2(n(η) + 1)ℓ
and hence d(x, x′) ≤ 2(n(η) + 1)ℓλ+ κ. Therefore by the triangle inequality,

d(z0, zn) ≤ 2(n(η) + 1)ℓλ+ κ+ 2N1.

Since η is a (Q, q)–quasi-geodesic we have that

T ′ ≤ Q(2(n(η) + 1)ℓλ+ κ+ 2N1) +Qq.

Recall that for N2 large enough, N1/n(η) can be as small as we want. Hence

T ′

n(η)
≤ Q(2ℓλ) +

Q(2ℓλ+ κ+ 2N1) + q

n(η)

≤ Q(2ℓλ) + 1.
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Lastly we can see that

d(zi, zi+1) = d

(
η

(
i
T ′

n(η)

)
, η

(
(i+ 1)

T ′

n(η)

))
≤ Q(Q(2ℓλ) + 1) + q = C,(6.9)

which gives the desired bound on d(zi, zi+1).
Let 0 ≤ i ≤ n − 1 be such that ti+1 − ti > ℓ. Let σ(x) = ϵ(2x) + x be a

linear function, where ϵ is the linear function from Lemma 6.5 applied to quasi-
geodesic constants (λ, κ). Let δ be the linear function from Lemma 6.1 applied to
(λ, κ)-quasi-geodesics. Define γR = γ|[ti+δ(D),ti+ℓ−δ(D)].

Recall that qi(si) is the (D, ℓ)–exit point for (qi, γ). Hence we have that d(qi(si), γ(ti)) ≤
D and the following two paths have distance at least D from γR

I) qi|[si,Ti],
II) [γ(ti), qi(si)].

Where for II) we used Lemma 6.1. We now want to find point γ(t) and qi+1(s) with
similar properties and where in addition t− ti is bounded from above and below in
terms of ℓ.

Claim 5. There exists t′ ∈ [0, T ] and s′ ∈ [0, Ti+1] such that ℓ ≤ t′ − ti ≤ σ(ℓ) and
d(γ(t′), qi+1(s

′)) ≤ D. Moreover, we can choose t′ and s′ such that the following
paths have distance at least D from γR

III) qi+1|s′,Ti+1
,

IV) [γ(t′), qi+1(s
′)].

Proof of Claim 5.
Case 1: ti+1 − ti ≤ σ(ℓ). In this case, choose t′ = ti+1 and s′ = si+1. Property

III) and d(γ(t′), qi+1(s
′)) ≤ D follow from qi+1(s

′) being a (D, ℓ)–exit point. Since
ti+1 ≥ ti + ℓ, Property IV) follows from Lemma 6.1.

Case 2: ti+1 − ti > σ(ℓ). In this case, ti + σ(ℓ)− ℓ ≤ t′ ≤ ti + σ(ℓ) be such that
d(γ(t′), qi+1) ≤ D. Choose s′ such that d(qi+1(s

′), γ(t′)) ≤ D. Again IV) follows
from Lemma 6.1. Property III) follows from Lemma 6.5 and the choice of σ. ■

Define a = γ(ti), b = γ(t′), c = qi(si) and d = qi+1(s
′). Now the goal is to

find a path of controlled length that connects c with d and avoids III) follows from
LemmaγR. The general idea is to “flow-up” the combing lines to get far away from
γR and then “jump” from one combing line to the other using the boundedness as-
sumption to guarantee that the two combing lines are sufficiently close to each other.

Defining the path p. Observe that d(a, u) ≤ λσ(ℓ) + κ for all u ∈ γ|ab.
Define ρ(ℓ) = 2D + λσ(ℓ) + κ. By the triangular inequality, d(c, d) ≤ ρ(ℓ) and
d(c, u) ≤ ρ(ℓ) for all u ∈ γR. Recall that c = qi(si), d = qi+1(s

′) and that C is a
bound on d(zi, zi+1) linearly depending on ℓ. Define

τ(ℓ) = λ(κC + 2κ+D + ρ(ℓ)).(6.10)

For large enough N1, the domain length of qi is at least si + τ(ℓ) and hence

d(qi(τ(ℓ) + si), qi(si)) ≥ κC + κ+D + ρ(ℓ).(6.11)

By boundedness, there exist s such that

d(qi(si), qi+1(s)) ≤ κC + κ.(6.12)

Consider the following path

p = [a, c] ∗ qi|[si,si+τ(ℓ)] ∗ [qi(si + τ(ℓ)), qi+1(s)] ∗ qi+1|[s,s′] ∗ [d, b].(6.13)
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Claim 6. The path p satisfies the following two properties:

(1) d(p, γR) ≥ D
(2) length(p) ≤ χ(ℓ), where χ is a function which is linear in ℓ and depends on

(Q, q).

Proof of Claim 6. (1): By the triangle inequality, (6.11) and (6.12), we have that
d([qi(si+ τ(ℓ)), qi+1(s)], γR) ≥ D. Hence d(p, γR) ≥ D follows from I), II), III) and
IV).

(2): Since p is a concatenation of five (λ, κ)–quasi-geodesics, by Lemma 2.3, it
suffices to show that for each of them the distance of their endpoints is linearly
bounded in ℓ. For [a, c], [b, d] this follows from II) and IV). For qi|[si,si+τ(ℓ)] it
follows since τ(ℓ) is linear in ℓ. For [qi(si + τ(ℓ)), qi+1(s)] it follows from (6.12).
Lastly, for qi+1|[s,s′] it follows from the triangle inequality, because both d(a, b) and
all of the other four subsegments had endpoints at linearly bounded distance. Thus
there exists a linear function χ such that length(p) ≤ χ(ℓ). Not that τ depends on
(Q, q) and hence so does χ but this dependece is allowed. ■.

Concluding the proof. We now have a path p, which by Lemma 2.24 cannot
exist, a contradiction. Hence, all (Q, q)–quasi-geodesic η with endpoints in the
N1–neighbourhood of γ stay in the N2–neighbourhood. Implying any (λ, κ)–quasi-
geodesic which is L–locally M–Morse is (N2, Q, q)–weakly Morse. The scale L
depends on (Q, q). □

7. Weak Morse local-to-global and sigma-compactness

The goal of this section is to show that a metric space with the weak Morse
MLTG property needs to have either the (ordinary) MLTG property or have a non-
σ compact Morse boundary. We remind that a topological space is σ–compact if
it can be written as a countable union of compact sets. Let us fix some notation.
Given functions M,N : X → R, we write M ≤ N if M(x) ≤ N(x) for all x ∈ X in
the domain of M .

Definition 7.1 (Exhaustion). We say that a sequence (Mn)n∈N is an exhaustion
of ∂∗X if Mn ≤ Mn+1 for all n and for all Morse rays γ : [0,∞) → X starting at
e we have that γ is Mn–Morse for some n.

Observe that the Morse boundary ∂∗X is σ compact if and only if there exists
an exhaustion of ∂∗X by [6, Lemma 2.1] and [7, Lemma 4.1].

Lemma 7.2. Let M be a Morse gauge and (λ, κ)–quasi-geodesic constants, there
exists a Morse gauge M ′ only depending on M,λ and κ such that the following
holds:

(1) (Triangles) Let ∆ be a triangle with (potentially unbounded) sides α, β, γ
which are (λ, κ)–quasi-geodesics. If α and β are M–Morse, then γ is M ′–
Morse.

(2) (Equivalent quasi-geodesics) Let α, β be (λ, κ)–quasi-geodesics which are at
bounded Hausdorff distance and which have the same starting point. If α
is M–Morse, then β is M ′–Morse.

(3) (Bounded distance) Let α, β be (λ, κ)–quasi-geodesics such that the end-
points of β are in the κ–neighbourhood of α. If α is M–Morse, then β is
M ′–Morse.
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(4) (Concatenation) Let α and β be M–Morse (λ, κ)–quasi-geodesics such that
their concatenation γ = α ∗ β is a (λ, κ)–quasi-geodesic. Then γ is M ′–
Morse.

7.1. Weak Morse local-to-global. We start by establishing some basic proper-
ties about weak Morse local-to-global spaces.

Setup: In this section we let (X,d) denote a proper geodesic metric space which
satisfies the weak MLTG and G be a group acting coboundedly on X. Further, let
r ≥ 0 be the constant such that for every x ∈ X we have Nr(G · x) = X.

The following is a version of Lemma 7.21 about Morse triangles. Specifically,
it deals with the case when the sides are only locally Morse in the case of a weak
Morse local-to-global space. As we only need this in a very specific setting, the
statement and the proofs are specialized accordingly. However, the proof can be
easily adapted to other, more general, settings.

Lemma 7.3. Let M,N be Morse gauges and (λ, κ)–quasi-geodesic constants. There
exists a Morse gauge N ′, a constant δ and a function τ : R≥0 → R≥0 such that for
every constant L the following holds. Let η be an N–Morse geodesic segment with
endpoints x, z, and let γ be a (λ, κ)–quasi-geodesic segment which is τ(L)–locally
M–Morse with endpoints u and v. If d(u, z) ≤ r, then for any y ∈ η the geodesic
[y, v] is L-locally N ′–Morse and contained in the δ–neighbourhood of η|yz ∪ γ.

Figure 6. Proof of Lemma 7.3

Proof. Let z be a closest point to u on [y, v]. By Lemma 3.1, p1 = [u, z] ∗ [y, v]|zv
is a (3, 0)–quasi-geodesic. By the weak MLTG property, up to choosing τ(L) large
enough, we can guarantee that p1 lies in a uniform neighbourood of γ. In particular,
it is L–locally Morse, where the constants can be determined in terms of L and the
local Morse gauge of γ. Now consider the concatenation p2 = [y, v]|yc ∗ [c, u]∗ [u, z].
It is a (3, r)–quasi-geodesic. Since η is Morse, we have that p2 lies in a uniform
neighbourhood of η and it is Morse, where the Morse gauge depends on r. Thus,
[y, b] is the concatenation of two geodesics which are both L–locally Morse. In
particular, [y, v] is L–locally Morse, for a worse Morse gauge. Moreover, since p1
and p2 are both in a uniform neighbourhood of η|yz ∪ γ, so is [y, v]. □

Lemma 7.4. Let M,N be Morse gauges and (λ, κ)–quasi-geodesic constants. There
exist Morse gauges N ′ and Nnot, functions f : R≥0 × R≥0 → R≥0 and g : R≥0 →
R≥0 and quasi-geodesic constants (λ′, κ′) such that for every constant L the fol-
lowing holds. For i = 1, 2, let ηi be an N–Morse geodesic segment with endpoints
xi, zi, and let yi be a point on ηi. Let γ be a (λ, κ)–quasi-geodesic segment which is
g(L)–locally M–Morse but not Nnot–Morse and whose endpoints u and v satisfy

d(z1, u) ≤ r and d(v, x2) ≤ r,

d(y1, z1) ≥ f(d(u, v), L) and d(x2, y2) ≥ f(d(u, v), L).



26 CORNELIA DRUŢU, DAVIDE SPRIANO, AND STEFANIE ZBINDEN

Then the path p = η1|x1y1
∗ [y1, y2] ∗ η2|y2z2 is a (λ′, κ′)–quasi-geodesic which is

L-locally N ′–Morse. Moreover, if p is an Ñ–Morse (λ′′, κ′′)–quasi-geodesic, then γ

is Ñ ′–Morse, where Ñ ′ only depends on Ñ ,N, λ, κ and (λ′′, κ′′).

Figure 7. Depiction of Lemma 7.4

Proof. Applying Lemma 7.3 first to [y1, v] and then to [y1, y2] yields the existence
of a function g, a Morse gauge N ′′ and a constant δ such that if γ is g(L)–locally
M–Morse, then [y1, y2] is L-locally N ′′–Morse and [y1, y2] is contained in the δ–
neighbourhood of η1|y1z1 ∪ γ ∪ η2|x2y2 .

If d(η1, η2) ≤ 2δ, then applying Lemma 7.21 about Morse triangles multiple
times yields a Morse gauge N0 depending only on N,λ, κ, r and δ such that γ is
N0–Morse. Defining Nnot = N0 yields that d(η1, η2) > 2δ.

Next we show that p′ = η1|x1y1
∗ [y1, y2] is L–locally an N ′–Morse (λ′, κ′)–quasi-

geodesic for a Morse gauge N ′ and quasi-geodesic constants (λ′, κ′) which we will
determine below. Let y be the first point on [y1, y2] which is in the closed δ–
neighbourhood of γ ∪ η2. By continuity, y is in the closed δ–neighbourhood of
η1|y1z1 . Since d(η1, η2) > 2δ, y is not in the closed δ–neighbourhood of η2 and
hence in the closed δ–neighbourhood of γ. We now proceed to bound d(y, y1) from
below. By the triangle inequality, we have that

d(y, y1) ≥ d(y1, γ)− δ,

≥ d(y1, z1)− λ(λd(u, v) + κ)− κ− δ.

Thus, for large enough f , we have that d(y, y1) ≥ L. Define (λ′, κ′) = (1, 2δ). To
prove that p′ is L-locally a (λ′, κ′)–quasi-geodesic it suffices to show that d(p′(s), p′(t)) ≥
|s−t|−2δ for all s, t with p′(s) ∈ η1|x1y1

and p′(t) ∈ [y1, y2] with d(p′(t), y1) ≤ L. Let
s, t be such constants. Since d(y, y1) ≥ L, there exists c on η1|y1z1 with d(p′(t), c) ≤
δ and hence d(y1, c) ≥ d(y1, p

′(t))−δ. Observe that |s−t| = d(p′(s), y1)+d(y1, p
′(t)),

implying that d(p′(s), p′(t)) ≥ d(p′(s), c) − δ ≥ |s − t| − 2δ. Hence p′ is indeed L–
locally a (λ′, κ′)–quasi-geodesic. Furthermore, [y1, y2] is L-locally N ′′–Morse and
η1|x1y1

is N–Morse. Thus, by Lemma 7.24 about concatenations there exists a
Morse gauge N ′ only depending on N,N ′′, λ and κ such that p′ is L-locally N ′–
Morse.

Analogously, we can show that [y1, y2]∗η2|y2z2 is L–locally an N ′–Morse (λ′, κ′)–
quasi-geodesic. Lastly, since d(y1, y2) ≥ L this shows that p as a whole is L–locally
an N ′–Morse (λ′, κ′)–quasi-geodesic.

It remains to prove the moreover part of the statement, which follows from
repeatedly applying Lemma 7.21 about Morse triangles. □

Lemma 7.5. Let M and N be Morse gauges and let (λ, κ) be quasi-geodesic con-
stants. Then there exists a Morse gauge Nnot, a constant Lmin, and a map Φ
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between Morse gauges such that the following holds. Suppose there exists an N–
Morse geodesic ray η. Then for each sequence {γi} of (λ, κ)–quasi-geodesic seg-
ments which are Li-locally M–Morse but not Nnot–Morse and with Li ≥ Lmin and
limi→∞ Li = ∞, there exists a Morse geodesic ray ζ such that for all Morse gauges
Ñ , if ζ is Ñ–Morse, then γi is Φ(Ñ)–Morse.

Proof. Let N ′, Nnot, (λ
′, κ′) and f, g be the Morse gauges, quasi-geodesic constants

and functions from Lemma 7.4 applied to the Morse gaugesM,N and quasi-geodesic
constants (λ, κ). By potentially increasing N ′, we may assume that N ′ ≥ N .
Let Lquasi, λ

′′, κ′′ be constants such that every Lquasi-locally N ′–Morse (λ′, κ′)–
quasi-geodesic is a (λ′′, κ′′)–quasi-geodesic. Let Lmin = g(Lquasi). For every quasi-
geodesic pair (Q, q), let LQ,q and M(Q, q) be constants such that every LQ,q–
locally N ′–Morse (λ′, κ′)–quasi-geodesic is a (M(Q, q), Q, q)–Morse (λ′′, κ′′)–quasi-
geodesic.

Let (γi)i be a sequence as in the statement. For every i ≥ 1 letDi = f(d(ui, vi), Li),
where ui and vi are the endpoints of γi.

Define η′1 = η and let x1 = y1 be the starting point of η′1. Let z1 be a point on
η′1 such that d(y1, z1) ≥ D1. Define η1 as η′1|y1z1 . Lastly, define γ′

1 as a translate of
γ1 with endpoints u′

1, v
′
1 such that d(u′

1, z1) ≤ r. For i ≥ 1 inductively define the
following, which is depicted in Figure 8.

Figure 8. Proof of Lemma 7.5

• η′i+1 as a translate of η starting in the r–neighbourhood of v′i
• wi+1 as the starting point of η′i+1

• xi+1 as a point on η′i+1 with d(wi+1, xi+1) = Di.
• yi+1 as a point on η′i+1 with d(wi+1, yi+1) = Di + Lquasi + i, and hence

d(xi+1, yi+1) = Lquasi + i.
• zi+1 as a point on η′i+1 with d(wi+1, zi+1) = Di + Lquasi + i + Di+1 and
hence d(yi+1, zi+1) = Di+1.

• ηi+1 as η′i+1|wi+1zi+1
.

• γ′
i+1 as a translate of γi+1 with endpoints u′

i+1, v
′
i+1 and such that d(u′

i+1, zi+1) ≤
r.

For i ≥ 1 define ζi = [yi, xi+1] ∗ [xi+1, yi+1]. And for each i define ζ ′i as the
infinite concatenation

ζ ′i = ζi ∗ ζi+1 ∗ ζi+2 ∗ . . .

Next we show that ζ ′1 is a quasi-geodesic. Indeed, since Li ≥ g(Lquasi) for all
i, the path [xi, yi] ∗ [yi, xi+1] ∗ [xi+1, yi+1] is an Lquasi–locally N ′–Morse (λ′, κ′)–
quasi-geodesic by Lemma 7.4. Since d(xi, yi) ≥ Lquasi, the above implies that ζ ′1 is
Lquasi–locally an N ′–Morse (λ′, κ′)–quasi-geodesic. By the choice of Lquasi, ζ

′
1 is a

(λ′′, κ′′)–quasi-geodesic.



28 CORNELIA DRUŢU, DAVIDE SPRIANO, AND STEFANIE ZBINDEN

Now we show that ζ ′1 is N0–Morse for a Morse gauge N0 which we are about
to construct. Let (Q, q) be a quasi-geodesic pair. Since limi→∞ Li = ∞, there
exists iQ,q ≥ LQ,q such that for all i ≥ iQ,q we have that Li ≥ g(LQ,q). Hence
by Lemma 7.4, [xi, yi] ∗ [yi, xi+1] ∗ [xi+1, yi+1] is LQ,q–locally an N ′–Morse (λ′, κ′)–
quasi-geodesic for all i ≥ iQ,q. Since iQ,q ≥ LQ,q and d(xi, yi) ≥ i we have that ζ ′iQ,q

is also LQ,q–locally an N ′–Morse (λ′, κ′)–quasi-geodesic. Hence, by the definition
of LQ,q, ζ

′
iQ,q

is (MQ,q, Q, q)–Morse. Consider pQ,q = ζ1 ∗ . . . ∗ ζiQ,q−1. We have

that ζ ′1 = pQ,q ∗ ζ ′iQ,q
. Further, since pQ,q is a finite subsegment of ζ ′1, there exists

a constant NQ,q such that p is (NQ,q, Q, q)–Morse. Define

N0(Q/3, q) = max{NQ,q,MQ,q}.

Claim 7. The quasi-geodesic ζ ′1 is N0–Morse.

Proof of Claim 7. Let ξ be a (Q/3, q)–quasi-geodesic with endpoints a and b
on ζ ′1. If both its endpoints are on pQ,q, then, since pQ,q is (NQ,q, Q, q)–Morse ξ
is contained in the NQ,q–neighbourhood of ζ ′1|ab. If both endpoints a and b are
contained in ζ ′iQ,q

, then, since ζ ′iQ,q
is (MQ,q, Q, q)–Morse, ξ is contained in the

MQ,q neighbourhood of ζ ′1|ab. It remains to show that ξ stays in the N0(Q/3, q)–
neighbourhood of ζ1|[a,b] if a lies on pQ,q and b lies on ζ ′iQ,q

. Let c be the endpoint

of pQ,q (and hence the starting point of ζ ′iQ,q
). Let c′ be a closest point on ξ to c.

By Lemma 3.1 the paths ξ|ac′ ∗ [c′, c] and [c, c′]∗ξ|c′b are (Q, q)–quasi-geodesics. By
the arguments above, they are contained in the NQ,q and MQ,q–neighbourhood of
ζ ′1|ac and ζ ′1|cb respectively. Since N0(Q/3, q) = max{NQ,q,MQ,q}, the statement
follows ■

We have showed that ζ ′1 is a Morse (λ′′, κ′′)–quasi-geodesic, hence there exists
a geodesic ζ with the same starting point which is at bounded Hausdorff distance
from ζ ′1. Note that (λ′′, κ′′) only depend on X,M, λ, κ and not the quasi-geodesics

γi. Assume that ζ is Ñ–Morse for some Morse gauge Ñ . By Lemma 7.22, ζ ′1 is Ñ ′′–

Morse, where Ñ ′′ only depends on Ñ , λ′′ and κ′′. Since [xi, yi] ∗ [yi, xi+1] ∗ [xi+1, yi]

is a subsegment of ζ ′1, it is also Ñ ′′–Morse. By Lemma 7.4, γi is Ñ
′–Morse, where

Ñ ′ only depends on Ñ ′′, N,M,X, λ and κ, which concludes the proof. □

Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. We assume that X satisfies the weak MLGT but not the
MLTG. Observe that any space with empty Morse boundary satisfies the MLTG,
thus ∂∗X is not empty, and there exists a ray η which is N–Morse for some Morse
gauge N . We want to show that ∂∗X is not σ-compact. More precisely, we will
prove that X does not have an exhaustion.

Assume by contradiction that X has an exhaustion (Mn)n∈N. Let (M,λ′, κ′) be
a triple that fails the Morse local-to-global property. Since X satisfies the weak
MLTG, there exist constants L0, λ, κ such that all L0–locally M–Morse (λ, κ′)–
quasi-geodesics are (λ, κ)–quasi-geodesics. Thus we can apply Lemma 7.5 to the
Morse gauges M and N and the quasi-geodesic constants (λ, κ) to get a Morse
gauge Nnot, constant Lmin and a map Φ between Morse gauges.

For each i ≥ 1, define Li = max{i, Lmin, L0}. Since (M,λ′, κ′) fails the Morse
local-to-global property, there exists a path γi which is Li–locally an M–Morse
(λ′, κ′)-quasi-geodesic but not a max{Nnot,Φ(Mi)}–Morse (λ, κ)–quasi-geodesic.
Since Li ≥ L0, γi is a (λ, κ)–quasi-geodesic and hence the failure of the MLTG
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property is that γi is not Φ(Mi)–Morse. Moreover, by potentially replacing γi with
a subsegment, we can assume that γi is finite. Indeed, if all finite subsegments of
γi were Φ(Mi)–Morse, γi itself would be Φ(Mi)–Morse.

Let ζ be the Morse geodesic obtained from Lemma 7.5 applied to the sequence
{γi}. Since ζ is Morse and (Mn)n∈N is an exhaustion, there exists a Morse gauge
Mn such that ζ is Mn–Morse, implying that γn is Φ(Mn)–Morse. However, we
precisely chose γn to not be Φ(Mn)–Morse, which is a contradiction. The statement
follows. □
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