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Abstract. We show that the Morse boundary of a Morse local-to-global group is σ-compact. More-

over, we show that the converse holds for small cancellation groups. As an application, we show that
the Morse boundary of a non-hyperbolic, Morse local-to-global group that has contraction does not

admit a non-trivial stationary measure. In fact, we show that any stationary measure on a geodesic
boundary of such a groups needs to assign measure zero to the Morse boundary. Unlike previous

results, we do not need any assumptions on the stationary measures considered.

1. Introduction

Introduced in [Cor17], generalizing the contracting boundary of [CS15], the Morse boundary is a
topological space that encodes information about the Morse directions at infinity of a metric space. In
this paper we study the relation between geometric properties of a group G and topological properties
of its Morse boundary ∂∗G. Morse directions are geodesic rays with properties akin to those of geodesic
rays in a hyperbolic spaces, and accordingly the Morse boundary is a way to define a space with similar
properties to the Gromov boundary for spaces that are not hyperbolic [CCM19, CD19, CH17, Cor17,
FK22, KMZ24, Liu21, Mur19, Zal18, Zbi23a]. However, this comes at a price: while the Gromov
boundary of a (proper) geodesic space is always compact, the Morse boundary is compact only when
the space is hyperbolic, in which case it coincides with the Gromov boundary [CD19]. Thus, effectively
one only considers non-compact Morse boundaries. We investigate the strong σ-compactness of the
Morse boundary, which is the best compactness property that a non-compact topological space might
hope to have. A topological space is strongly σ-compact if it is the direct limit of countably many
compact spaces. We show strong σ-compactness of the Morse boundary for a large class of examples.

Theorem A. Let G be a group satisfying the Morse local-to-global property. Then the Morse boundary
of G is strongly σ-compact.

Theorem A focuses on groups with the Morse local-to-global property (Definition 2.10). This is a
class of groups introduced by Russell, Tran, and the second author [RST22] to address the following
issue: although Morse geodesic are defined to mimic the behaviour of geodesics in hyperbolic spaces,
there are groups with an abundance of Morse geodesic that behave fairly different from hyperbolic
groups [OOS09].

The Morse local-to-global property makes such pathological behaviour impossible, since it controls
the structure of Morse geodesics. As evidence, for a Morse local-to-global group G the following
hold: if |∂∗G| = ∞ then G contains a non-abelian free subgroup; there are combinations theorems
for stable subgroups [RST22]; the Morse geodesics form regular languages and the growth series of
stable subgroups is rational [CRSZ22]; if stable subgroups of G are separable then G is product stable
separable [MS24]; and other results.
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One should expect all “normal” groups to satisfy the Morse local-to-global property as evidenced
by the rich class of groups proven to have the Morse local-to-global property, which we list here.

(0) Hyperbolic groups.
(1) Groups with empty Morse boundary, for example, wide groups, which contain solvable groups,

Burnside groups, uniformly amenable groups.
(2) CAT(0) groups.
(3) Hierarchically hyperbolic groups, in particular Mapping Class groups, extension of lattice Veech

groups, Artin groups of extra large type and others.
(4) Fundamental groups of closed three manifolds.
(5) Coarsely injective groups [SZ22].
(6) Convex divisible domains [IW24].
(7) Groups with a bounded, consistent bicombing, this is proven in upcoming work of Cornelia

Druţu and the second and third author.
(8) Groups hyperbolic relative to any of the above.

When not specified, the reference is [RST22]. By Theorem A, all of the above have strongly σ-
compact Morse boundary. This result is new for items (4), (7) and (8), in particular yielding the
following.

Corollary B. Let G = π1(M) be the fundamental group of a closed three manifold. Then ∂∗G is
strongly σ-compact.

This is a step forward in understanding the Morse boundary of three manifold groups, which re-
mained fairly mysterious until recently [CCS23, Zbi22].

The key tool in the proof of Theorem A is the language theoretic characterizations of Morse geodesics
coming from [CRSZ22]. Regular languages on a given alphabet can be encoded with a finite amount
of information, and thus there are countably many of them. This allows us to select countably many
compact sets whose union covers the Morse boundary.

It is natural to wonder whether the converse direction of Theorem A holds. A positive answer
would be extremely interesting as it would suggest that many results about the algebra, geometry and
algorithmic properties of a group could be deduced from the topology of the Morse boundary. We are
able to show such a converse for small cancellation groups.

Theorem C. Let G = ⟨S|R⟩ be a C ′(1/9) group. Then the following are equivalent

(1) G is a Morse local-to-global group,
(2) ∂∗G is σ-compact,
(3) ∂∗G is strongly σ-compact.

Theorem C constitutes the main technical result of the paper. The missing implication is (2) ⇒ (1).
The proof is in three steps. Firstly, we use the characterization of Morse geodesics in term of their
intersection function (see Definition 2.28) developed in [ACGH19] together with a characterization of
σ-compactness from [Zbi23b] to show a Morse local-to-global property for geodesics. Then we turn
to the quasi-geodesic case and the second step is to use the small cancellation condition to estimate
the intersection function of (a perturbation of) the chosen local Morse quasi-geodesic. The final step
is to use disk diagrams to approximate the chosen local quasi-geodesic with a geodesic, and use the
estimate on the intersection function together with Strebel’s classification of combinatorial geodesic
bigons (see Lemma 2.27) to reduce the question to a local-to-global problem for a geodesic, which we
solved in the first step.
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1.1. Applications to stationary measures. As an application to Theorem A, we study the sta-
tionary measure of the Morse boundary of certain Morse local-to-global groups.

Theorem D. Let G be the mapping class group of a non-sporadic surface and let µ be a probability
measure on G whose support generates G as a semigroup. Let ∆G denote either a horofunction boundary
of G or the HHG boundary of G. Then the Morse boundary in ∆G has measure zero with respect to
any µ-stationary measure on ∆(G).

Theorem D implies that, in particular, the set of points of ∆(G) corresponding to axis of pseudo-
Anosov elements. Theorem D is obtained as a special case of a more general result stating that, if a
group has contraction (see Definition 5.1), the image of the Morse boundary has measure zero in any
compact metric boundary that “encodes the geometry”. More precisely, we say that a metric space B
is a geodesic boundary for G ↷ X if G acts on B by homeomorphisms and there is a G–equivariant
map ι from the set of geodesic rays of X to B and so that

• for all Morse gauges M , the image under ι of all M–Morse geodesics starting at a given
basepoint is compact, and,

• if γ1 and γ2 are geodesic rays representing different points in the Morse boundary, then ι(γ1) ̸=
ι(γ2).

A geodesic boundary for a group is a geodesic boundary for which the action G ↷ X is geometric. The
two conditions on the geodesic rays are very natural and encode the fact that the boundary should be
related to directions at infinity and that it should not collapse the negatively-curved directions. The
requirements that a geodesic boundary is a metrizable space is perhaps more restricting, as there are
many natural boundaries that fail to be metrizable, for example the Morse boundary with the direct
limit topology.

Theorem E. Let G be a non-hyperbolic group with the Morse local to-global property and suppose that
G acts geometrically on a space containing a contracting ray. Let µ be a probability measure on G.
Then for any geodesic boundary B of G the image of the set of Morse rays has measure zero in B with
respect to any µ–stationary measure.

The proof of Theorem D follows the strategy of [MT18]. We note that the class of geodesic bound-
aries with a stationary measure is very general. Indeed, the existence of a µ–stationary measure on a
boundary B is guaranteed if B is compact [MT18, Lemma 4.3]. Thus, for a finitely generated group
G acting geometrically on a geodesic metric space X, the following are compact geodesic boundaries.

(1) The horofunction boundary of X.
(2) If G is an HHG, the HHG boundary of G.
(3) If X is an ATM space (as in [QR24]), the quasi-redirecting boundary of X.

Another advantage of Theorem E is that it is very well behaved with respect to quasi-isometries. For
instance, the horofunction boundary does depend on a specific space X on which G acts. The theorem
states that if one can find a single space on which G acts geometrically that contains a contracting
ray (which does not need to be periodic), then the image of Morse ray in any horofunction boundary
needs to have measure zero.

The vanishing of Morse directions in the horofunction boundary, or more generally in convergence
bordifications, was previously studied in [Yan23], where the author showed that a harmonic measure
arising from a random walk with a finite logarithmic moment needs to be supported on the Myrberg
set, which is disjoint from the set of contracting geodesic rays. Using techniques from [CFFT22] the
same theorem can be applied without the assumption on logarithmic moment. Notably, our result does
not need any moment assumption and works for all stationary measures, not only harmonic measures
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arising from random walks. Another strategy to prove Theorem E is to use techniques from [CCT23]
after reinterpreting the question in terms of hitting measures of random walks.

Similar results were also obtained by [CDG22, Theorem 1.3], where the authors constructed a
continuous map from the Morse boundary to the Martin boundary using the Ancona inequality, and
as a consequence the image of the Morse boundary needs to have vanishing measure with respect to the
associated harmonic measure. Our result recovers Theorem 1.3 of [CDG22] when applied to Martin
boundaries of hierarchically hyperbolic groups.

Theorem E holds trivially if a geodesic boundary B does not admit a µ-stationary measure. Since
the existence of a µ–stationary measure on a boundary B is guaranteed if B is compact, we conclude
the following two corollaries.

Corollary F. Let G be a non-hyperbolic group with the Morse local to-global property and suppose
that G acts geometrically on a space containing a contracting ray. The Morse boundary ∂∗G of G with
the metrizable topology of [CM19] does not admit a stationary measure.

Corollary G. Let G be a non-hyperbolic group with the Morse local to-global property and suppose
that G acts geometrically on a space containing a contracting ray. There is no topology on ∂∗G that is
compact, metrizable, where all Morse strata are closed and so that G acts on ∂∗G by homeomorphisms.

1.2. Further questions.

Question 1. Let G be a group. Is having Morse local-to-global property equivalent to having strongly
σ-compact Morse boundary?

Question 1 is currently open, among the reason due to a severe lack of counterexamples. Indeed, all
the known groups that do not satisfy the Morse local-to-global property are infinitely presented, and
to the best of our knowledge there is only one class of groups that are known to have non (strongly)
σ-compact Morse boundary, namely the class of small-cancellation groups described in [Zbi23b]. In
particular, the following is open.

Question 2. Is there a finitely presented group with non σ-compact Morse boundary?

A priori, there is a real difference between σ-compact and strongly σ-compact Morse boundary, as
the arguments in [Zbi23a] show that the Morse boundary of the free product of two groups is σ-compact
if and only if both factors have strongly σ-compact Morse boundary. However, it is very reasonable to
expect that for groups the two notions are the same.

Question 3. Is there a group with σ-compact, but not strongly σ-compact Morse boundary?

To complete the general theme of “how much of the Morse local-to-global property is implied by
σ–compactness of the Morse boundary?”, we ask the following.

Question 4. Which consequences of the Morse local-to-global property follow directly from the σ-
compactness of the Morse boundary?

One of the main advantages of the Morse local-to-global property is that it is a quasi-isometry
invariant. One might therefore hope to relate it to acylindrical hyperbolicity, since it is a famous open
question whether the latter is quasi-isometry invariant. The strongest possible result in this sense one
can hope is a positive answer to the following.

Question 5 (Hard). If G has σ-compact Morse boundary, does the action of G on ∂∗G satisfy strong
north-south dynamics?
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It is known that the action of a group on the Morse boundary satisfies weak north-south dynamics
([Liu21, Theorem 6.7] for the limit topology, [CM19, Theorem 9.4] for the metrizable topology). A
dynamical criterion for acylindrical hyperbolicity is provided in [Sun19, Theorem 1.2], and it requires an
element with strong north-south dynamics. One of the reasons why this is necessary is that acylindrical
hyperbolicity implies the existence of a free subgroup and, as mentioned, there are groups with non-
empty Morse boundary and no free subgroups [OOS09]. Thus, an intermediate question is the following.

Question 6. If G is such that ∂∗G is infinite and strongly σ-compact, does G have a free non-abelian
subgroup?
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stationary measures, providing the reference to [MT18] and, generally, for many conversations on the
topic on the early stages of the project. Moreover, we would like to thank Matt Cordes, Kunal Chawla,
Marco Fraccaroli, Ursula Hamenstädt, Davide Perego, Alessandro Sisto, Kim Ruane, Giulio Tiozzo,
and Wenyuan Yang for helpful conversations and clarifications. The first named author was partially
supported by NSERC CGS-D.

2. Preliminaries

Notation and Convention: For the rest of this paper, X denotes a proper geodesic metric
space with basepoint x0 and G a finitely generated group acting geometrically (that is, properly and
cocompactly) on X. For any subspace Y ⊂ X the closest point projection from X to Y , if it exists,
is denoted by πY : X → 2Y . For points x, y ∈ X, we denote by [x, y] a fixed choice of geodesic from
x to y. We call [x, y] − {x, y} the interior of the geodesic [x, y] and denote it by (x, y). Likewise, we
use the notation [x, y) = [x, y] − {y} and (x, y] = [x, y] − {x}. Let p : I → X be a path, by abuse of
notation, we denote its image Im(p) by p. For s, t ∈ I, we denote the subsegment of p restricted to
[s, t] by p[s, t]. Given x, y ∈ p, we denote by [x, y]p a choice of subsegment p[s, t] such that p(s) = x
and p(t) = y and s ≤ t. If s > t, then [x, y]p can still be defined, we just traverse p in the other
direction. Note that if p is a geodesic, then s and t are uniquely defined.

Definition 2.1 (Quasi-geodesic). Let Q ≥ 1 be a constant. A continuous map γ : I → X is a
Q-quasi-geodesic if

|t− s|
Q

−Q ≤ d(γ(s), γ(t)) ≤ Q|t− s|+Q,(1)

for all s, t ∈ I ⊂ R.
2.1. Morse boundaries. In this section, we recall key definitions and results about the Morse bound-
ary and Morse geodesics.

Definition 2.2. A function M : R≥1 → R≥0 is called a Morse gauge, if it is non-decreasing and
continuous.

Definition 2.3 (Morseness). A quasi-geodesic γ is called M -Morse for some Morse gauge M if every
Q–quasi-geodesic λ with endpoints γ(s) and γ(t) stays in the closed M(Q)–neighbourhood of γ[s, t].
A quasi-geodesic is called Morse if it is M–Morse for some Morse gauge M .

Morse geodesics satisfy a plethora of properties, which we summarize below. These properties are
well known properties, variations of which can be found in [Cor17, CCM19, Zbi22].

Lemma 2.4 (Properties of Morse geodesics). Let M be a Morse gauge. For each constant Q ≥ 0 there
exists a constant D and a Morse gauge M ′ such that for every M–Morse Q–quasi-geodesic γ : I → X
and Q–quasi-geodesic γ′ : I ′ → X the following hold.
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(i) (Subsegment) If γ′ is a subsegment of γ, then γ′ is M–Morse.
(ii) (Close to Morse quasi-geodesic) If γ and γ′ have endpoints which are in the Q–neighbourhood

of each other, then
dHaus(γ

′, γ) ≤ D

and γ′ is M ′–Morse.
(iii) (n–gons) Let (γ1, γ2, . . . , γn) be a geodesic n–gon (with possibly infinite sides). If all sides γi

are M–Morse for 1 ≤ i ≤ n− 1, then γn is Mn–Morse, where Mn only depends on M and n.
(iv) (Small diameter) If diam (γ′) ≤ Q, then γ′ is M–Morse.
(v) (Concatenation) If γ′ is M–Morse and the endpoint of γ is the same as the starting point of

γ′, then γ ∗ γ′ is M ′–Morse.

We can use Morse geodesics to define the Morse boundary. The Morse boundary ∂∗X, as defined in
[Cor17], is the set of all Morse geodesic rays, where two geodesics are identified if they have bounded
Hausdorff distance. A description of the topology can be found in [Cor17]. Since the Morse boundary
is a quasi-isometry invariant (see [Cor17]) we can define the Morse boundary of the group G as
∂∗G = ∂∗X. Given a Morse gauge M , we can define the M–Morse stratum of ∂∗X, denoted by
∂M
x0
X, as the subset of ∂∗X consisting of (equivalence classes of) geodesic rays starting at x0 which

are M–Morse. We list some properties of the Morse boundary and Morse strata which we will use.

Lemma 2.5 ([Cor17]). The Morse boundary is a visibility space.

The following results from [CD19] and [Cor17] show that Morse strata encode compact sets.

Lemma 2.6 ([CD19, Lemma 4.1] and [Cor17, Proposition 3.12]). Let K ⊂ ∂∗X be compact, then there
exists a Morse gauge M such that K ⊂ ∂M

x0
X. Furthermore, ∂M

x0
X is compact for all Morse gauges

M .

A topological space Y is σ-compact, if it is the union of countably many compact subsets. In light
of Lemma 2.6 we have the following

Lemma 2.7. The Morse boundary ∂∗X is σ-compact if and only if there exists an increasing sequence
(Mn)n∈N of Morse gauges, such that ∂∗X = ∪n∈N∂

Mn
x0

X.

We call such a sequence (Mn)n∈N an exhaustion of ∂∗X. If the Morse boundary ∂∗X is σ-compact
and (Mn)n∈N is an exhaustion of ∂∗X we have that for every Morse geodesic ray γ, there exists
n = n(γ) such that γ is Mn–Morse.

However, sometimes we need a stronger property. Namely, we want that for any Morse gauge M ,
there exists n = n(M) such that all M–Morse geodesics are Mn–Morse. Below we give a formal
definition of this which we call strong σ-compactness.

Definition 2.8. The space X has strongly σ-compact Morse boundary if there exists an exhaustion
(Mn)n∈N of ∂∗X such that for all Morse gauges M , we have that ∂M

x0
X ⊂ ∂Mn

x0
X for some n = n(M).

We call such an exhaustion (Mn)n∈N a strong exhaustion. Equivalently, ∂∗X is strongly σ-compact, if
and only if

∂∗X = lim−−−→
n∈N

∂Mn
x0

X.

2.2. The Morse local-to-global property. In this section we define the Morse local-to-global prop-
erty, a property introduced in [RST22].

Definition 2.9. We say that a path p : I → X L–locally satisfies a property (P ) if for every s, t ∈ I
with |t − s| ≤ L the subpath p[s, t] has the property (P ). The quantity L is called the scale. We say
that p is locally (P ) if it is L–locally (P ) for some scale L.
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The two local properties we will consider are being Morse and being a quasi-geodesic.

Definition 2.10 (Morse local-to-global). A space X satisfies the Morse local-to-global property (for
short MLTG) if the following holds. For any constant Q ≥ 1 and Morse gauge M there exists a scale L,
a constant Q′ ≥ 1 and a Morse gauge M ′ such that every path that is L–locally an M–Morse Q–quasi
geodesic is globally an M ′–Morse, Q′–quasi-geodesic.

In [RST22], it is shown that a path which is locally a quasi-geodesic is globally a quasi-geodesic as
long as it stays close to an actual geodesic.

Lemma 2.11 ([RST22, Lemma 2.14]). Let γ : I → X be an L–locally Q–quasi-geodesic and C ≥ 0.
Let s, t ∈ I. If L > Q(3C +Q+ 2) and γ[s, t] is contained in the C–neighbourhood of a geodesic from
γ(s) to γ(t), then γ[s, t] is a Q′–quasi-geodesic where Q′ depends only on Q and C.

Although the statement of Lemma 2.11 differs slightly from [RST22, Lemma 2.14], it follows from
the proof of [RST22].

Further, we have that being close to a locally Morse quasi-geodesic implies being a locally Morse.

Lemma 2.12. Let M be a Morse gauge and let Q ≥ 1 be a constant. There exists a Morse gauge M ′

such that the following holds. Let L′ ≥ 0 be a scale. There exists a scale L such that any Q–quasi-
geodesic γ′ in the Q–neighbourhood of an L–locally Q–quasi-geodesic γ is L′–locally M ′–Morse.

Proof. This is a direct consequence from Lemma 2.4(ii) applied to subsegments of γ and γ′. □

2.3. Strong contraction. We now introduce strong contraction, which is slightly stronger property
than being Morse.

Definition 2.13 (Strongly contracting). Let C ≥ 0 be a constant. We say that a geodesic γ is
C–contracting if for every point x ∈ X, diam(πγ(Bd(x,γ)(x))) ≤ C. A geodesic is called strongly
contracting if it is C–contracting for some constant C.

The following lemma from [ACGH17] relates strong contraction to Morseness.

Lemma 2.14 (Implication of Theorem 1.4 of [ACGH17]). Let C ≥ 0 be a constant. There exists a
Morse gauge M only depending on C such that any C–contracting quasi-geodesic is M–Morse.

The converse of Lemma 2.14 does not always hold. Spaces where it does are called Morse-
dichotomous (see [Zbi24]) and we have the following result.

Corollary 2.15. If X is Morse-dichotomous, then ∂∗X is strongly σ-compact.

Similar to Morse geodesics, strongly contracting geodesics satisfy a plethora of properties, which we
summarize below.

Lemma 2.16 (Direct consequence of [ACGH17] Theorem 7.1). For any constant C, there exists a
constant D such that any C–contracting geodesic γ satisfies the D–bounded geodesic image property,
that is, every geodesic λ with d(γ, λ) ≥ D, satisfies diam(πγ(λ)) ≤ D.

The following lemma states that strong contraction of geodesics behaves well under taking subseg-
ments; a proof can be found in [EZ22, Theorem 1.1].

Lemma 2.17 (Strongly-contracting subsegments). For all constants C, there exists a constant C ′

such that the following holds. Every subgeodesic of a C–contracting geodesic is C ′–contracting.

To following lemma states quasi-geodesics close to strongly contracting geodesics are strongly con-
tracting, a proof can be found for example in [Zbi23a, Lemma 1.11].
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Lemma 2.18. There exists a function Φd : R≥0 → R≥0 such that the following holds. Every C–quasi-
geodesic segment λ with endpoints contained in a C–neighbourhood of a C–contracting C–quasi-geodesic
γ is Φd(C)–contracting.

Strongly contracting geodesics also satisfy the following slightly technical lemmas which we will use
in Section 5

Lemma 2.19. Let C ≥ 0 be a constant. There exists a constant C ′ such that the following holds.
Let γ be a C–contracting geodesic. Let x, y be points and x′ and y′ closest point projections of x
respectively y onto γ. If d(x′, y′) ≥ C ′, then for all geodesics η from x to y there exist u, v on η such
that dHaus([u, v]η, [x

′, y′]γ) ≤ C ′. Moreover one can assume that w ∈ [u, v]η for all w ∈ η which are
contained in the C–neighbourhood of [x′, y′]γ .

Proof. By Lemma 2.16 there exists a constant D ≥ C only depending on C such that γ has D–
bounded geodesic image. By Lemma 2.17 we can assume that all subsegments of γ have D–bounded
geodesic image. Consequently, if C ′ ≥ D we know that d(η, [x′, y′]) ≤ D. Let u and v be the first
respectively last point on η in the (D + 1)–neighbourhood of [x′, y′]γ and let u′ and v′ be closest
point projections of u and v on [x′, y′]γ . Note that with these choices, we have d(u, u′) ≤ D + 1 and
d(v, v′) ≤ D + 1. With this, d([x, u]η, [x

′, y′]γ) > D and since [x′, y′]γ has D–bounded geodesic image
we know that diam(π[x′,y′]γ ([x, u]η)) ≤ D implying that d(x′, u′) ≤ D. Hence by the triangle inequality
d(x′, u) ≤ 2D + 1. Similarly one can show that d(y′, v) ≤ 2D + 1. Lemma 2.14 implies that there
exists a Morse gauge M only depending on C such that [x′, y′]γ is M–Morse. Finally, Lemma 2.4(ii)
shows that the Hausdorff distance between [x′, y′]γ and [u, v]η can be bounded by a constant C ′ only
depending on M and D and hence only depending on C. Our choice of u and v shows that the moreover
part holds. □

Lemma 2.20. Let C be a constant. For each constant l, there exists a constant Cl depending only on
C and l such that the following holds. Let γ : [0, T ] → X be a geodesic and S ∈ [0, T ] such that γ[0, S]
is C–contracting. Let λ : [0, T ′] be a geodesic with d(λ(0), γ(0)) ≤ l and d(λ(T ′), γ(T )) ≤ l. Then the
following hold

(1) λ[0, S] is Cl–contracting,
(2) dHaus(λ[0, S], γ[0, S]) ≤ Cl.

Proof. Let C ′ be the constant form Lemma 2.19 applied to max{C, 2l}. By Lemma 2.16 there exists a
constant D only depending on C such that γ[0, S] has D–bounded geodesic image. If T−S ≤ l+D+1,
then (1) follows directly from Lemma 2.18 about geodesics with endpoints close to contracting geodesics
and (2) follows from Lemma 2.14 which states that contracting geodesics are Morse and Lemma 2.4(ii)
which states that if quasi-geodesics have close endpoints and one of them is Morse, then they have
bounded Hausdorff distance. Hence we can assume that T − S ≥ l + D + 1. Since any geodesic
of length at most r is r–contracting, the statement follows trivially if S ≤ 2l + C ′ + D and hence
we can assume that S > 2l + C ′ + D. With these assumptions we have by the triangle inequality
that d([γ(T ), λ(T ′)], γ[0, S]) ≥ D + 1 and hence diam (πγ[0,S]([γ(T ), λ(T

′)])) ≤ D since γ[0, S] has
D–bounded geodesic image. Let x, y and z be the closest point projection of λ(T ′), γ(T ) and λ(0) onto
γ[0, S]. Note that y = γ(S) because γ is a geodesic. Hence the statement above implies that

d(x, γ(S)) ≤ d(x, y) ≤ D.

Since d(λ(0), γ(0)) ≤ l we have that d(z, γ(0)) ≤ 2l by the triangle inequality. Consequently, d(z, x) ≥
S−2l−D > C ′. By Lemma 2.19, there exists u, v on λ such that the Hausdorff distance between [z, x]γ
and [u, v]λ is at most C ′. The moreover part of Lemma 2.19 further guarantees that u = λ(0). Recall
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that d(y, γ(S)) ≤ D. By the triangle inequality, we have that v = λ(t) for some S −D−C ′ − 2l ≤ t ≤
S +D + C ′ + 2l. Hence

d(λ(S), γ(S)) ≤ d(γ(S), v) + d(v, x) ≤ 2D + 2C ′ + 2l.

Now (1) follows directly from Lemma 2.18 about geodesics with endpoints close to contracting geodesics
and (2) follows from Lemma 2.14 which states that contracting geodesics are Morse and Lemma 2.4(ii)
which states that if quasi-geodesics have close endpoints and one of them is Morse, then they have
bounded Hausdorff distance. □

2.4. Small cancellation. We will subsequently define most notions about small-cancellation needed
in our paper. For further background on small-cancellation we refer to [LSLS77].

Notation and Conventions. For the rest of this section and in Section 3, unless specified oth-
erwise, S denotes a finite set of formal variables, S−1 its formal inverses and S the symmetrised set
S ∪ S−1. A word w over S (respectively S) is a finite sequence of elements in S (respectively S). By
abuse of notation, we sometimes allow words to be infinite.

Let G = ⟨S|R⟩ be finitely generated group, X = Cay(G,S) its Cayley graph, p an edge path in X
and v a word over S.

• By following p, we can read a word w over S. We say that p is labelled by w. We say a word
w′ is a subword of p if it is a subword of w.

• For any vertex x ∈ X there is a unique edge path labelled by v and starting at x.

We say a word w over S is cyclically reduced if it is reduced and all its cyclic shifts are reduced.
Given a set R of cyclically reduced words, we denote by R the cyclic closure of R∪R−1. If R = {w}
we sometimes denote R by w.

Definition 2.21 (Piece). Let S be a finite set and let R be a set of cyclically reduced words over S.
We say that p is a piece if there exists distinct words r, r′ ∈ R such that p is a prefix of both r and r′.
We say that p is a piece of a word r ∈ R if p is a piece and a subword of r.

Definition 2.22 (C ′(λ) condition). Let λ > 0 be a constant. We say that a set R of cyclically reduced
words satisfies the C ′(λ)–small-cancellation condition if for every word r ∈ R and every piece p of r
we have |p| < λ|r|.

If R satisfies the C ′(λ)–small-cancellation condition we call the finitely generated group G = ⟨S|R⟩
a C ′(λ)–group. If G = ⟨S|R⟩ is a C ′(λ)–group, then the graph Γ defined as the disjoint union of cycle
graphs labelled by the elements of R is a Gr′(λ)–labelled graph as defined in [GS18]. We can thus
state and use the results of [GS18] and [ACGH19] in the less general setting of groups satisfying the
C ′(λ)–small-cancellation condition.

Lemma 2.23 (Lemma 2.15 of [GS18]). Let G = ⟨S|R⟩ be a C ′(1/6)–group. Let r ∈ R be a relator,
Γ0 a cycle graph labelled by r and let f : Γ0 → Cay(G,S) be a label-preserving graph homomorphism.
Then f is an isometric embedding, and its image is convex.

We call the image of such a label-preserving graph homomorphism the image of a relator. By abuse
of notation, we sometimes use relators and their images interchangeably. The lemma has the following
consequence.

Lemma 2.24. Let M be a Morse gauge and let G = ⟨S|R⟩ be a C ′(1/6)–group. Then for each integer
N ≥ 2, there exists D such that the following holds. If r ∈ R is a relator and w ⊂ r is a subword such
that

(1) |w| ≥ |r|
N ,
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(2) and w is M–Morse,

then |r| ≤ D.

Proof. Let w′ ⊂ w be a subword with length |w′| = |r|
N . Then w′ is also M–Morse by Lemma 2.4(i).

By Lemma 2.23, the relator r isometrically embeds in G, so the segment r−w′ is an N–quasi-geodesic.
Let x ∈ r − w′ be the point in that segment with maximal distance from w. Since r is isometrically
embedded in G,

d(x,w′) ≥
|r| − |r|

N

2
=

N − 1

2N
|r|.

On the other hand, since w′ is M–Morse,

d(x,w′) ≤ M(N).

Combining the two inequalities we have |r| ≤ D, where

D =
2N

N − 1
M(N).

□

2.4.1. Disk diagrams.

Definition 2.25. A (disk) diagram is a contractible, planar 2-complex. A disk diagram is

• simple, if it is homeomorphic to a disk.
• S–labelled, if all edges are labelled by an element of S.
• a diagram over R, if the boundary of any face is labelled by an element of R

Let D be a disk diagram and let Π be a face of D. An arc is a maximal subpath of D whose interior
vertices all have degree 2. An arc is an interior arc if its interior is contained in the interior of D and
an exterior arc otherwise. Note that an exterior arc is contained in the boundary of D. The interior
degree of a face Π is the number of interior arcs in its boundary and the exterior degree of a face Π is
the number of exterior arcs in its boundary. A face is an interior face if its exterior degree is 0 and
exterior face otherwise.

Definition 2.26 (Combinatorial geodesic bigon). A combinatorial geodesic n–gon (D, γ1, γ2, . . . , γn)
is a simple diagram D whose boundary ∂D is the concatenation γ1 ∗ . . .∗γn and such that the following
conditions hold.

(1) Each boundary face whose exterior part is a single arc contained in one of the sides γi has
interior degree at least 4.

(2) The boundary of each interior face consists of at least 7 arcs.

Combinatorial geodesic n–gons for n ≤ 3 have been classified in [Str90] as follows.

Lemma 2.27 (Strebel’s classification,[Str90, Theorem 43]). Let D be a simple diagram.

(1) If D is a combinatorial 1-gon, then D has a single face.
(2) If D is a combinatorial 2-gon (also called bigon), then either D has a single face or it has

shape I1 from Figure 1.
(3) If D is a combinatorial geodesic 3–gon (also called triangle), then either D has a single face

or it has one of the shapes I2, I3, II, III1, IV , or V in Figure 1.

Each of these shapes represents an infinite family of combinatorial geodesic bigons or triangles
obtained by performing face combination at a non-degenerate, distinguished vertex with a shape I1
bigon arbitrarily many times. Figure 2 shows alternate examples of each shape.
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I1 I2 I3

II III1 IV V

Figure 1. Strebel’s classification of combinatorial geodesic bigons and triangles,
adopted from[ACGH19, Figure 5].

I1 I2 I3

II III1 IV V

Figure 2. Alternate examples of each shape, adopted from[ACGH19, Figure 6].

2.4.2. Morse geodesics in small-cancellation groups. In this section we highlight some consequences
of [ACGH19], which allow us to characterize Morse geodesics in small-cancellation groups in terms of
their intersections with relators.

Definition 2.28 (Intersection function). Let G = ⟨S|R⟩ be a C ′(1/6)–group. Let γ be an edge path
in Cay(G,S). The intersection function of γ is the function ρ : N → R+ defined by

ρ(t) = max
|r|≤t

r∈R

{
|w|

∣∣∣w is a subword of r and γ
}
.

Remark 2.29. In light of Lemma 2.23, the intersection function ρ of a geodesic γ is equal to the
function ρ′, defined via

ρ′(t) = max
|Γ0|≤t

{|Γ0 ∩ γ|} ,

where Γ0 ranges over all images of relators.

The following lemma is a consequence of [ACGH17, Theorem 1.4] and [ACGH19, Corollary 4.14,
Theorem 4.1]. It shows the relation between contraction, Morseness and the intersection function. In
[Zbi23b] it is explained in more detail how Lemma 2.30 follows from [ACGH19, Theorem 4.1, Corollary
4.14]

Lemma 2.30 (Consequence of [ACGH19, Theorem 4.1, Corollary 4.14]). Let G = ⟨S|R⟩ be a C ′(1/6)–
group. Let α be a geodesic in X = Cay(G,S) and let ρ be its intersection function. Then,

(i) The geodesic α is Morse if and only if ρ is sublinear.
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(ii) If ρ is sublinear, α is M -Morse for some Morse gauge M only depending on ρ.
(iii) If α is M -Morse, then ρ ≤ ρ′ for some sublinear function ρ′ only depending on M .

2.4.3. Increasing partial small-cancellation condition. In [Zbi23b], the notion of C ′(1/f) for “viable”
functions f is introduced, which is used to define the increasing partial small-cancellation condition
(see Definition 2.34).

Definition 2.31. We say that a non-decreasing function f : N → R+ is viable if f(n) ≥ 6 for all n
and limn→∞ f(n) = ∞.

Observe that a consequence of a function f being viable is that the function ρ(n) = n/f(n) (or
equivalently the function ρ′(n) = max{ρ′(n− 1), n/f(n)}) is sublinear.

Definition 2.32. Let f be a viable function. We say that a finitely generated group G = ⟨S|R⟩ is a
C ′(1/f)–group if R is infinite and for every piece p of a relator r ∈ R we have that |p| < |r|/f(|r|).

In other words, in C ′(1/f)–groups, pieces of large relators have to be smaller fractions of their
relators than pieces of smaller relators. Requiring that viable functions satisfy f(n) ≥ 6 ensures that
all C ′(1/f)–groups are C ′(1/6)–groups. Instead of requiring that a set of relators R satisfies the
C ′(1/f) condition as a whole, we can also require that certain words satisfy the C ′(1/f) condition
with respec to R.

Definition 2.33. Let f be a viable function, let x be a reduced word and let R be a set of cyclically
reduced words. We say that the pair (x,R) satisfies the C ′(1/f)–small-cancellation condition if every
common subword p of x and a relator r ∈ R satisfies |p| < |r|/f(|r|).

The following definition introduced in [Zbi23b] quantifies having sufficiently long subwords w of
longer and longer relators such that (w,R) satisfy the C ′(1/f)–small-cancellation condition.

Definition 2.34 (IPSC). Let G = ⟨S|R⟩ be a finitely generated group. We say that G satisfies the
increasing partial small-cancellation condition (IPSC) if for every sequence (ni)i∈N of positive integers,
there exists a viable function f such that the following holds. For all K ≥ 0 there exists i ≥ K and a
relator r = xy ∈ R satisfying:

i) |r| ≥ ni,
ii) |x| ≥ |r|/i,
iii) the pair (x,R) satisfies the C ′(1/f)–small-cancellation condition.

We care about groups satisfying the IPSC condition due to the following result.

Lemma 2.35 ([Zbi23b, Theorem B]). Let G = ⟨S|R⟩ be a C ′(1/6)–group. The Morse boundary of G
is non-σ-compact if and only if G satisfies the IPSC condition.

3. The Morse-local-to-global property in small-cancellation groups

In this Section we prove the implication (2) =⇒ (1) of Theorem C. That is, we show that if a
C ′(1/9)–group has a σ-compact Morse boundary, then it satisfies the Morse local-to-global property.
We first show that if a C ′(1/6)–group G = ⟨S|R⟩ has σ-compact Morse boundary, then any geodesic
which is L–locally Morse for a sufficiently large scale L is globally Morse (see Definition 3.1). The
proof of this relies on Lemma 2.35, which states that C ′(1/6)–groups have σ-compact Morse boundary
if and only if they satisfy the IPSC condition. As a second step, we approximate a locally Morse
quasi-geodesic by a path p, which we show to have “small” intersection function by using disk diagram
techniques. Lastly, we show using combinatorial geodesic bigons, that for all s, t, we have that p[s, t]
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stays close to the geodesic [p(s), p(t)]. The last step is the only place where we require that G is a
C ′(1/9)–group instead of a C ′(1/6)–group. If that step is shown for C ′(1/6)–groups, then the whole
result can be upgraded to C ′(1/6)–groups.

Definition 3.1 (geodesic MLTG). We say that a geodesic metric space X satisfies the geodesic MLTG
property if for every Morse gauge M , there exists a constant L and a Morse gauge M ′ such that every
geodesic which is L–locally M–Morse is M ′–Morse.

Further we say that a C ′(1/6) group G = ⟨S|R⟩ satisfies the geodesic MLTG property if X =
Cay(G,S) satisfies the geodesic MLTG property.

Proposition 3.2. Let G = ⟨S|R⟩ be a C ′(1/6)–group. If ∂∗G is σ-compact, then X = Cay(G,S)
satisfies the geodesic MLTG property.

Proof. By Lemma 2.35, which states that for C ′(1/6)–groups having σ-compact Morse boundary is
equivalent to not satisfying the IPSC condition it suffices to show that if G does not have the geodesic
MLTG property, then G satisfies the IPSC condition.

Assume that G = ⟨S|R⟩ does not have the geodesic MLTG property. Consequently, there exists a
Morse gauge M such that for all Morse gauges M ′ and scales L there exists a geodesic γL,M ′ which is
L–locally M–Morse but not M ′–Morse.

Thanks to Lemma 2.30 we know that in a C ′(1/6) group a geodesic γ is M–Morse if and only if its
intersection function ργ is sublinear. Further, the Morse gauge M and the intersection function ργ can
be bounded in terms of each other. Hence not satisfying the geodesic MLTG property is equivalent to
the following.

There exists a sublinear function ρ such that for all sublinear functions ρ′ and for all scales L, there
exists a geodesic γL,ρ′ which is L-locally ρ–intersecting but not ρ′–intersecting.

If γL,ρ′ is not ρ′–intersecting, then there has to exist a relator r = xy such that x is a subpath of
γL,ρ′ and |x| > ρ′(|r|). In other words, there exists a subpath x of a relator r such that x is L–locally
ρ–intersecting but |x| > ρ′(|r|).

Now we can start proving that G satisfies the IPSC. Let (ni)i∈N be a sequence of integers. We want
to show that there exists a viable function f such that for each K there exists i ≥ K and a relator
r = xy such that the pair (i, r = xy) satisfies conditions i)− iii) from Definition 2.34. Since increasing
(ni) makes it harder to satisfy these conditions, it suffices to consider sequences (ni)i∈N which satisfy
ni+1 ≥ ni + 1 and ni ≥ i2 for all i.

In fact, we will construct a viable function f , a sequence of relators ri = xiyi and of integers
ki ≥ ki−1 + 1 such that for all i,

I) |xi| ≥ |ri|/ki,
II) |ri| ≥ nki

,
III) (xi,R) satisfies the C ′(1/f)–small-cancellation condition.

The existence of such a sequence of relators will conclude the proof.
Let ρ′ be the following function

ρ′(t) = max

{
t

j
, ρ(t), ρ′(t− 1)

}
for nj ≤ t < nj+1.

Note that ρ′ is sublinear and non-decreasing.
We start by inductively constructing the sequence of relators ri = xiyi and numbers ki satisfying

conditions I) and II). We also need the additional quantities mi = |ri|/|xi| which we will ensure satisfy
mi ≥ ki/2, and Li, the scales we use need to find geodesics γLi,ρ′ as in the hypothesis.
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To start the induction, set k0 = 6, m0 = 3 and let x0 be the empty word, so that |x0| = 0. For
i ≥ 1 define

Li = nmax{|xi−1|,2⌈mi−1⌉+2}.

Let ri = x′
iy

′
i be the smallest relator such that

(1) x′
i is Li–locally ρ–intersecting.

(2) x′
i is not ρ

′–intersecting.

Note that such a relator exists as argued above. Since x′
i is not ρ′–intersecting and ρ′ ≥ ρ, we know

that |x′
i| > Li. Define ki as the integer such that nki

≤ |ri| < nki+1. Since |x′
i| > Li we have that

|ri| ≥ |x′
i| > Li = nmax{|xi−1|,2⌈mi−1⌉+2},

and hence

(2) ki ≥ max{|xi−1|, 2⌈mi−1⌉+ 2}.

Since x′
i is not ρ′–intersecting, we know that |x′

i| > ρ′(|ri|) ≥ |ri|/ki. By choosing xi as an appro-
priate subsegment of x′

i, we can ensure that

(3)
|ri|
ki

< |xi| ≤ 2
|ri|
ki

.

Define mi = |ri|/|xi|. Inequalities (2) and (3) show that

⌈mi−1⌉+ 1 ≤ ki
2

≤ mi ≤ ki.(4)

In particular,

mi−1 ≤ mi,(5)

ki−1 + 1 ≤ ki,(6)

where we used the left most inequality of (4) and that by induction ki−1/2 ≤ mi−1. Further, since
nj ≥ j2 for all j, we have that |xi| > |ri|/ki ≥ ki ≥ |xi−1|. In particular,

|xi−1| ≤ |xi|.(7)

With this, I) and II) are satisfied for all i. It remains to construct a viable function f such that III)
is satisfied for all i. We will first construct a sublinear function g(t).

To do so, we define the following functions for all i.

gi(t) = 1 +

{
t if t ≤ |ri|
t

mi
otherwise.

Define

g′i(t) = max{ρ′(t), gi(t)} and g(t) = min
i∈N

{g′i(t)} = max{ρ′(t),min
i∈N

{gi(t)}}.

Lemma 3.3 shows that mini∈N{gi(t)}, and hence g, is sublinear. We want to show that (xi,R) satisfies
|p| < g(|r|) for all relators r ∈ R and pieces p which are a subword of xi.

Fix i, let r ∈ R be a relator and let p ⊂ r be a piece which is a subword of xi. We want to show
that |p| < g′j(|r|) for all j.

• Case 1: i < j.
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– Case 1.1: |r| ≥ |rj |. In this case

|p| ≤ |xi| ≤ |xj | =
|rj |
mj

≤ |r|
mj

< gj(|r|) ≤ g′j(|r|).

For the second step, we used (7).
– Case 1.2: |r| < |rj |. By the definition of gj , we have that gj(|r|) = |r|+ 1 and hence

|p| < |r|+ 1 = gj(|r|) ≤ g′j(|r|).

• Case 2 : i ≥ j.
– Case 2.1: |r| ≥ |ri|. In this case

|p| ≤ |xi| =
|ri|
mi

≤ |r|
mi

≤ |r|
mj

< gj(|r|) ≤ g′j(|r|).

The fourth inequality is due to (5), which implies that mj ≤ mi.
– Case 2.2: |r| < |ri|. In the definition of ri we chose the relator of minimal length which

has a subword which is Li–locally ρ–intersecting but not ρ′–intersecting. Since p is a
subword of xi it is Li–locally ρ–intersecting. Since |r| < |ri|, minimality of |ri| implies
that p is ρ′–intersecting. Hence

|p| ≤ ρ′(|r|) < g′j(|r|).

Lastly, we use g to construct a viable function f such that (xi,R) satisfies the C ′(1/f)–condition.
Neither f nor g will depend on i.

Define f ′(n) = n/g(n). Since f is sublinear, the function f ′ tends to infinity. Define the function
f ′′ as

f ′′(n) = min
n≤k

{f ′(k)}.

Since f tends to infinity, so does f ′′. Moreover f ′′ is non-decreasing. We have that f ′′ ≤ f ′ so being
C ′(1/f ′) implies being C ′(1/f ′′). Lastly define the function f as follows

f(n) = max{6, f ′′(n)}.

Note that f is viable. Since G is a C ′(1/6)–group, being C ′(1/f ′′) implies being C ′(1/f). Let i ≥ 1.
We have shown above that for any relator r ∈ R and piece p ⊂ r which is a subword of xi we have that
|p| < g(|r|) = |r|/f ′(|r|). Since f ′′ ≤ f ′ we have that |p| < |r|/f ′′(|r|) and since G satisfies the C ′(1/6)–
small-cancellation condition, we have that |p| < |r|/f(|r|). Hence we have successfully constructed
a viable function f such that (xi,R) satisfies the C ′(1/f)–small-cancellation, which concludes the
proof. □

Lemma 3.3. Let (mi)i∈N and (li)i∈N be increasing sequences of integers going to infinity. For each
i ∈ N, define gi as follows

gi(t) =

{
t if t ≤ li,
t

mi
otherwise.

Let g = min{gi}. Then g is sublinear.

Proof. First note that g is well defined. Indeed, the sequence (li) is increasing and diverges, hence for
each t there are only finitely many values of i such that gi(t) ̸= t, implying that the minimum is well
defined.
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To show that g is sublinear, it is enough to show that for each N , there exists and integer T such
that for all t ≥ T we have that g(t) < t

N . Fix N , since (mi)i∈N goes to infinity, there exists i such
that mi > N define T = li. For t ≥ T we have that gi(t) = t/mi < t/N and since g is the minimum
of all gi we have that g(t) < t/mi. □

The following lemma shows that Lemma 2.24 also works for subsets which are locally Morse, as
long as the groups satisfies the geodesic MLTG property.

Lemma 3.4. Let M be a Morse gauge and let G = ⟨S|R⟩ be a C ′(1/6)–group which satisfies the
geodesic MLTG property. Then there exists a scale L such that for each integer N ≥ 2, there exists D
such that the following holds. If r ∈ R is a relator and w ⊂ r is a subword such that

(1) |w| ≥ |r|
N ,

(2) and w is L–locally M–Morse,

then |r| ≤ D.

Proof. Since G satisfies the geodesic MLTG, there exist a Morse gauge M ′ and constant L such that

any L–locally M–Morse geodesic is M ′–Morse. Let w′ ⊂ w be a subword with length |w′| = |r|
N . In

particular, |w′| ≤ |r|
2 , so it is a geodesics segment. Since w is L–locally M–Morse, so is w′. It follows

that w′ is M ′–Morse. By Lemma 2.24, there exists D such that |r| ≤ D. □

3.1. Construction of auxiliary paths. In this section we assume that G = ⟨S|R⟩ is a C ′(1/9)–
small-cancellation group with σ-compact Morse boundary. We will show that, for an appropriate scale
L, L–locally Morse quasi-geodesics are Morse quasi-geodesics.

Let Q ≥ 1 be a constant and let M be a Morse gauge. Let γ be a 2L–locally M–Morse Q–quasi-
geodesic for a constant L to be determined later. For each i ∈ Z let ηi be a geodesic from γ(iL) = ai
to γ((i+ 1)L) = ai+1.

Lemma 3.5. There exists a Morse gauge M0 not depending on γ such that ηi is M0–Morse for all i.

Proof. The geodesic ηi has endpoints on an M–Morse geodesic, so Lemma 2.4(ii) implies that ηi is
M0–Morse for some M0 only depending on M . □

Let Γ be an image of some relator r ∈ R and let W be a subpath of Γ with |W | ≤ |Γ|/2 and which
intersects both ηi and ηi+1. We define xW and yW to be the points on ηi and ηi+1 which are contained
in W and minimize d(ai, xW ) and d(ai, yW ) respectively. Over all such W , let Wi be the one that
maximizes d(ai, xWi

) + d(ai, yWi
). We define xi = xWi

and yi = yWi
. We will first show that d(ai, xi)

and d(ai, yi) is small.

Lemma 3.6. There exists a constant C not depending on γ and L such that d(ai, xi) ≤ C and
d(ai, yi) ≤ C for all i.

Proof. Let bi be the last point on ηi−1 which is also contained in ηi. By the definition of xi and yi,
the point bi lies on [xi, ai]ηi−1 and [ai, yi]ηi .

Consider the triangle ∆ with sides [xi, yi], [yi, bi]ηi and [bi, xi]ηi−1 . By construction, the three sides
of ∆ only intersect at their respective endpoints. Let D be a minimal disk diagram with ∂D = ∆.
Since ∆ is a simple path, we know that D is a simple disk diagram.

Since in addition each side of ∆ is a geodesic, we can use the classification of geodesic triangles to
better understand how D looks like.

Assume there is a face Π of D which has exactly one exterior arc α = α1 ∪ α2 for which α1 is
contained in [bi, xi]ηi−1 and α2 is contained in [xi, yi). We show this cannot happen. The classification
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Figure 3. By classification of geodesic triangles, the disk diagram D must look like
the right figure.

of geodesic triangles implies that ∂Π = α ∗ β or ∂Π = α ∗ β1 ∗ β2 for some arc β respectively arcs β1

and β2 which are pieces. Since [bi, xi]ηi−1
is a geodesic we have that |α1| ≤ |Π|/2. Since relators are

convex, we know that [xi, yi] is a subpath of the image of a relator and hence α2 is a piece, implying
that |α2| ≤ |Π|/6. Consequently, |β| ≥ |Π|/3, respectively |β1| + |β2| ≥ |Π|/3, a contradiction to β,
respectively β1 and β2, being pieces.

Lemma 2.27 about the classification of combinatorial geodesic triangles shows that D has to be as
in Figure 3. In particular, there exists a face Π with ∂Π = α1 ∗ α2 ∗ α3 ∗ β where β is a piece, α1 is
contained in [xi, bi]ηi−1

, α2 = [xi, yi] and α3 is contained in [bi, yi]ηi
. We have that |α2| ≤ |Π|/2 since

[xi, yi] is a geodesic and |β| < |Π|/6 since β is a piece. Thus, for at least one of j = 1, 3, we have that
|αj | ≥ |Π|/6, say this holds for j = 1. By Lemma 3.5, we have that ηi−1, and hence α1, is M0–Morse,
where M0 does not depend on γ. Now we can apply Lemma 3.4 to α1 to get that |Π| ≤ Cr for some
constant Cr not depending on γ. Since both xi and yi lie on Π, we have that d(xi, yi) ≤ Cr.

Since γ is 2L–locally an M–Morse Q–quasi-geodesic and the geodesics ηi have endpoints on γ, there
exist (i− 1)L ≤ s ≤ iL ≤ t ≤ (i+1)L such that d(γ(s), xi) ≤ M(1) and d(γ(t), yi) ≤ M(1). Since γ is
2L–locally a Q–quasi-geodesic, we can bound s− t in terms of Q,M(1) and Cr. In turn, we can bound
d(γ(s), γ(iL)) and d(γ(t), γ(iL)) in terms of Q,M(1) and Cr. Hence, using the triangle inequality one
more time, we can see that d(xi, ai) ≤ C and d(yi, ai) ≤ C for a constant C only depending on Q,M(1)
and Cr, which do not depend on γ. □

Corollary 3.7. Let C1 be a constant. For large enough L we have that

d(ai, yi) + C1 < d(ai, xi+1),

for all i.

Proof. We have that d(ai, ai+1) ≥ ϵ(L) for a term ϵ(L) depending linearly on L. Hence for large
enough L, we can ensure that d(ai, ai+1) ≥ C1 + 2C, which implies the desired result. □

We now construct the auxiliary path. let

p = [γ(0), x0]η0
∗ [x0, y0] ∗ [y0, x1]η1

∗ [x1, y1] ∗ [y1, x2]η2
∗ [x3, y3] . . . ,

which is depicted in Figure 4. This path is well-defined by Corollary 3.7.

Lemma 3.8. There exists a constant C2 not depending on γ such that dHaus(p, γ) ≤ C2.
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Figure 4. The auxiliary path constructed from γ. For L large enough, the segments
[xi, yi] do not overlap by Corollary 3.7.

Proof. Since γ is L–locally M–Morse, the segment γ[iL, (i+ 1)L] is M–Morse. By Lemma 2.4(ii)

dHaus(ηi, γ[iL, (i+ 1)L]) ≤ C ′
2.

for a constant C ′
2 not depending on γ. Lemma 3.6 concludes the proof. □

Lemma 3.9. There exists a Morse gauge M ′ not depending on γ such that for every scale L′ the
following holds. For L large enough, p is L′–locally M ′–Morse.

Proof. By Lemma 2.4(v) and Lemma 2.4(iv), there exists a Morse gauge M ′ only depending on M0

and C such that the concatenation of two M0–Morse geodesics and a geodesic of length at most 2C
is M ′–Morse. If we choose L large enough such that d(yi, xi+1) ≥ L′, which we can by Lemma 3.9,
choose C as in Lemma 3.6, and choose M0 as in Lemma 3.5, then the argument above shows that p is
L′–locally M ′–Morse. □

Next we show that p has relatively small intersection function.

Lemma 3.10. We have that

ρp(t) ≤
2t

3
,

where ρp is the intersection function of p.

Proof. Let M ′ be the Morse gauge from Lemma 3.9 for which p is locally Morse. Let D,L′ be the
constants from Lemma 3.4 applied to the Morse gauge M ′ and N = 2. Let L be large enough such
that p is L′–locally M ′–Morse. Let R be the image of a relator and W a subpath (corresponding to a
subword) of R which is also a subpath of p. We can assume that W is a maximal such subpath (by
inclusion). Denote by W ′ the corresponding subpath R−W . We have to show that |W | ≤ 2|R|/3. By
the choices above, we have that W is L′–locally M ′–Morse and if |W | > 2|R|/3, then, we have that
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|R| ≤ D. So it remains to show that |W | ≤ 2|R|/3 for relators R with |R| ≤ D. For large enough L,
we have that d(yi, xi+1) ≥ D by Corollary 3.7. Hence, for |R| ≤ D we know that W is a subpath of

[yi−1, xi]ηi−1
∗ [xi, yi] ∗ [yi, xi+1]ηi

for some i.
Assume that |W | ≥ |R|/2 and W intersects [yi−1, xi]ηi−1

and [yi, xi+1]ηi
and the interior of at least

one of them, say of [yi−1, xi]ηi−1
. Then |W ′| ≤ |r|/2. In particular, we can see that xW ′ and yW ′

are the endpoints of W . Furthermore, d(ai, xW ′) > d(ai, xi) and d(ai, yW ′) ≥ d(ai, yi). This is a
contradiction to the definition of xi and yi.

It remains to show that |W | ≤ 2|R|/3 if W is a subword of [yi−1, xi]ηi−1 ∗ [xi, yi) (or equivalently
a subword of (xi, yi] ∗ [yi, xi+1]ηi). Let u be the word labelling W ∩ [yi−1, xi]ηi−1 and v be the word
labelling W ∩ [xi, yi). Since ηi−1 is a geodesic, we have that |u| ≤ |R|/2. By the maximality of W ,
and since [xi, yi] is a subword of a relator, we have that v is a piece and hence |v| ≤ |R|/6. Hence
|W | ≤ 2|R|/3, which concludes the proof. □

Lemma 3.11. There exists a constant C ′ such that the following holds. Let s ≤ t, then

dHaus(p[s, t], [p(s), p(t)]) ≤ C ′.

Proof. Let D be a minimal disk diagram with boundary ∂D = p[s, t] ∗ [p(t), p(s)].

Claim. If D is simple, then (D, p[s, t], [p(s), p(t)]) is a combinatorial geodesic bigon.

Proof of Claim. Since D is a minimal disk diagram, every interior arc of D is a piece. Since G is
a C ′(1/9)–group for any face Π of D and one of its interior arcs α, we have that |α| < |π|/9. Let Π
be a face of D. The above shows that if e(Π) = 0, then i(Π) ≥ 10. Further, it shows that if e(Π) = 1
and its exterior arc α satisfies that |α| ≤ 2|Π|/3, then i(Π) ≥ 4. So it remains to show that if α is an
exterior arc contained in p[s, t] or [p(s), p(t)], then |α| ≤ 2|Π|/3.

Since [p(s), p(t)] is a geodesic, any exterior arc α contained in [p(s), p(t)] satisfies |α| ≤ |Π|/2. Since
ρp(k) ≤ 2k/3, if α is an exterior arc contained in p[s, t], then |α| ≤ 2|Π|/3. ■

By Strebel’s classification of bigons, this shows that (if D is simple) any face Π of D intersects both
[p(s), p(t)] and p[s, t] and has exterior arcs α ⊂ p[s, t] and β ⊂ [p(s), p(t)] with |α|+ |β| > 7|Π|/9. Since
|β| ≤ |Π|/2, this implies that |α| ≥ 2|Π|/9.

With a similar argument, we can show that p[s, t] is simple, since otherwise Strebel’s classification
of 1-gons (Lemma 2.27) implies that there exists a face Π with its whole boundary on p[s, t] which
contradicts ρp(k) ≤ 2k/3.

If D is not simple, then we can apply the Claim to the simple subdiagrams of D to get the same
result about faces of D.

Now let Π be a face of D and α its exterior arc which is contained in p([s, t]). If L is large
enough, then p is L′–locally M ′–Morse for any L′ that we like. In particular, Lemma 3.4 implies
that there exists a constant C ′ such that |Π| ≤ C ′. Since this holds for all faces Π, we have that
dHaus(p([s, t]), [p(s), p(t)]) ≤ C ′. □

Corollary 3.12. There exists a constant C3 such that the following holds. Let s ≤ t, then there exists
a subsegment γ′ of γ such that

dHaus(γ
′, [p(s), p(t)]) ≤ C3.

Proof. This is a direct consequence of Lemma 3.8 and Lemma 3.11. □

Remark 3.13. In fact, given any subsegment γ′′ of γ, we have that γ′′ ⊂ γ′ for suitably chosen s and
t.
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Corollary 3.14. There exists a constant C4 not depending on γ such that the path γ is a C4–quasi-
geodesic.

Proof. Lemma 3.11 and Lemma 3.8 imply that increasingly large subsegments of γ are contained in
the C2 + C ′–neighbourhood of a geodesic. Lemma 2.11 concludes the proof. □

Corollary 3.15. There exists a Morse gauge M ′′ not depending on γ such that γ is M ′′–Morse.

Proof. Let γ′′ be any subsegment of γ. Use Remark 3.13 to choose s and t such that

dHaus(γ
′, [p(s), p(t)]) ≤ C3,

for a subsegment γ′ of γ which contains γ′′. Let L′ be a constant to be determined later. Lemma 2.12
implies that there exists a Morse gauge N such that for large enough L, [p(s), p(t)] is L′–locally N–
Morse. If L′ is large enough, G satisfying the geodesic MLTG implies that there exists a Morse gauge
N ′ (not depending on γ) such that [p(s), p(t)] is N ′–Morse. Lemma 2.4(ii) implies that γ′ is M ′′–
Morse for some Morse gauge M ′′ not depending on γ, s or t. Since, γ′′ is a subsegment of γ′ it is also
M ′′–Morse by Lemma 2.4(i).

Since γ′′ was chosen arbitrarily, we have shown that any subsegment of γ is M ′′–Morse, implying
that γ itself is M ′′–Morse. □

Proof of Theorem C. Theorem 4.3 shows that (1) =⇒ (3). It is clear that (3) =⇒ (2). Corollary 3.14
and Corollary 3.15 show that if G = ⟨S|R⟩ is a C ′(1/9)–group with σ-compact Morse boundary, then
for every Morse gauge M and constant Q there exist constants L,C4 and a Morse gauge M ′′ such
that any L–locally M–Morse Q–quasi-geodesic is an M ′′–Morse C4–quasi-geodesic, which shows that
(3) =⇒ (1). □

4. Morse local-to-global implies sigma-compact

In this section, we prove that a MLTG group has σ-compact Morse boundary. We will use tools
from language theory. For this reason, let us recast some of our previous definitions in a more language
theoretic fashion. Given a finite set S of formal symbols, the full language over S is the set S∗ consisting
of all finite words over S, namely all formal strings s1s2 . . . sn such that si ∈ S. Sometimes is useful
to consider the full infinite language over S, denoted by Sω, namely the set of all infinite words on S.
Given an alphabet S a language is subset L ⊆ S∗. In what follows, we will consider a group G and
the alphabet S is going to be a fixed finite, symmetric set of generators for G.

Given a language L ∈ S∗ its limit set is the set Λ(L) ⊆ Sω defined to be the set of infinite words
whose prefix are in the language, formally:

Λ(L) := {s1 . . . sn · · · ∈ Sω | s1 . . . sk ∈ L, ∀k ∈ N}.

Definition 4.1. Let S be a finite set. A finite state automaton with alphabet S is a tuple A =
(Γ, S, Z, v0) where

• Γ is a finite directed graph. We call the vertices of Γ the states of A.
• Each edge of Γ is labelled by an element of the alphabet S.
• Z is a subset of the vertices of Γ and the vertices of Z are called the accept states of A.
• v0 is a vertex of Γ. We call v0 the initial state of A.

Every finite state automaton produces an accepted language consisting of words produced by reading
the labels of each path in the directed graph that starts at the initial state and ends at one of the
accept states. We call these languages regular.
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Definition 4.2. Given a finite state automaton A = (Γ,S, Z, v0), a word w = a1 . . . an ∈ S∗ is read
by a path e1, . . . , en in A if the label of ei is ai for each i ∈ {1, . . . , n}. The language accepted by A
is the set of words in S∗ that are read by paths in A that start at the initial state s0 and end at an
accepted state of A. A language is regular if it is accepted by some finite state automaton.

Theorem 4.3. Let G be a finitely generated group satisfying the MLTG property. Then the Morse
boundary ∂∗G is strongly σ-compact.

Proof. Fix a Cayley graph for G. Since G satisfies the MLTG property, for each Morse gauge M there
exists BM , QM and a Morse gauge M ′ such that every BM–locally M–Morse geodesic is a global M ′–
Morse QM–quasi-geodesic. Let LM be the language of all geodesic words in the fixed Cayley graph of
G that are BM–locally M–Morse, and let Λ(LM ) its limit. Note that, by the MLTG property, Λ(LM )

contains the M–stratum ∂M
x0
G and is contained in the M ′–stratum of the Morse boundary, ∂M ′

x0
G. Now

consider any point ξ in the Morse boundary. It is in the M–stratum for some M , and since M–Morse
geodesic are locally M–Morse, ξ ∈ Λ(LM ). Thus, we can write

(8) ∂∗G =
⋃
M

Λ(LM ) ⊆
⋃
M

∂M ′

x0
G.

By [CRSZ22, Theorem 3.2], the language LM is regular, and thus there is finite state automaton
AM that accepts LM . Let A be the set of all such finite state automatons. Then we can rewrite (8) as

∂∗G =
⋃

AM∈A
Λ(LM ) ⊆

⋃
AM∈A

∂x0M
′G.

The set A is countable since it is contained in the set of all oriented, finite graphs labelled by generators
of G, and the latter is countable. So we showed that every Morse stratum M is contained in one of a
family of countably many Morse strata. In other words, the Morse boundary is strongly σ-compact. □

5. Stationary measures

In this section, we will present an application of Theorem A, which says that in most cases there is
no meaningful stationary measure on the Morse boundary.

For this section, let G be a finitely generated group, µ be a probability measure whose support
generatesG as a semigroup, and Z be a metrizable topological space thatG acts on by homeomorphism.
We first define some terminologies. We say a probability distribution on Z is µ-stationary if for any
Borel set U ⊂ Z we have

ν(U) =
∑
g∈G

µ(g)ν(g−1U).

The main geometric assumption we will make is the following.

Definition 5.1. A group G has contraction if there exists a geodesic metric space X such that G acts
on X geometrically and X contains a strongly contracting geodesic ray.

We remark that the existence of a strongly contracting geodesic ray is not known to be invariant
under quasi-isometries.

Theorem 5.2. Suppose G acts geometrically on a geodesic metric space X. Let M(X) be the set of
Morse geodesic rays on X. Suppose there is a map ρ : M(X) → Z. Assume further that

(a) G is non-hyperbolic, Morse local-to-global, and has contraction;
(b) if γ1 and γ2 are geodesic rays representing different elements of the Morse boundary, then

ρ[γ1] ̸= ρ[γ2].
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(c) ρ is G–equivariant.
(d) ρ (MM (X)) is compact, where MM (x) denotes the set of M–Morse geodesics starting at x0.

Then for any µ-stationary Borel measure ν on Z, we have

ν(ρ(M(X))) = 0.

In particular, any continuous G–equivariant map from the Morse boundary ∂∗G into Z induces a
map ρ : M(X) → Z that satisfies the properties above, hence we have the following special case.

Corollary 5.3. Suppose G is non-hyperbolic, Morse local-to-global, and has contraction; and suppose
there is a continuous G–equivariant map ρ : ∂∗G → Z. Then the image of the Morse boundary ρ(∂∗(G))
has measure zero with respect to any µ-stationary measure on Z.

It is natural to apply Theorem 5.2 to the horofunction compactification, where the existence of a
µ-stationary measure is guaranteed by [MT18, Lemma 4.3].

Definition 5.4. Let X be a metric space and fix a basepoint x0. The horofunction map is the map

ρ : X → C(X)

y 7→ ρy(z) := d(z, y)− d(x0, y),

where C(X) denotes the set of continuous, real-valued functions on X. The horofunction compactifi-

cation X
h
is the closure of ρ(X) in C(X).

We want to argue that the Morse boundary of X has measure zero in the horofunction compactifi-

cation X
h
with respect to any µ-stationary measure. The issue with that statement is that in general

there is no map between the Morse boundary and the horofunction compactification (the horofunction
compactification does not necessarily identify fellow-travelling geodesic rays). However, we can define

a map ρ : M(X) → X
h
by extending the horofunction map to M(X). For a geodesic ray γ we

define ρ[γ] = limt→∞ ργ(t). Note that ρ[γ] ∈ X
h
. The group G acts on X

h
equivariantly ([MT18,

Lemma 3.4]). The following lemma shows that ρ satisfies the injectivity condition in Theorem 5.2.

Lemma 5.5. Let γ1 and γ2 be geodesic rays representing different elements of the Morse boundary.
Then ρ[γ1] ̸= ρ[γ2].

Proof. Since γ1 and γ2 represent different elements of the Morse boundary, by visibility of the Morse
boundary (Lemma 2.5), there is a geodesic η such that the endpoints of η are the endpoints of γ1, γ2
respectively (see Figure 5). In particular, there are constants T1, T2 and K such that for all t large
enough we have

d(γ1(t+ T1), η(t)) ≤ K and d(γ2(t+ T2), η(−t)) ≤ K.

Choose S and s such that T1 + 2K ≤ s and s + 5K ≤ S, and let z = γ1(s), Z = γ1(S). Observe
that for all t ≥ S it holds:

ργ1(t)(z)− ργ1(t)(Z) =
(
d(z, γ1(t))− d(γ1(t), x0)

)
−
(
d(Z, γ1(t))− d(γ1(t), x0)

)
= d(γ1(s), γ1(t))− d(γ1(S), γ1(t)) = S − s.

Since this holds for all t large enough, we obtain

ρ[γ1](z)− ρ[γ1](Z) = lim
t→∞

ργ1(t)(z)− lim
t→∞

ργ1(t)(Z) = lim
t→∞

(ργ1(t)(z)− ργ1(t)(Z)) = S − s.
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Figure 5. Geodesic rays γ1 and γ2 correspond to different horofunctions because
ργ1(t)(z)− ργ1(t)(Z) and ργ2(t)(z)− ργ2(t)(Z) are different for large t.

Now consider γ2. Again, choose t large enough, in particular such that t ≥ T2 + 2K, and let vt such
d(η(vt), γ2(t)) ≤ K. We have:

ργ2(t)(z)− ργ2(t)(Z) =
(
d(z, γ2(t))− d(γ2(t), x0)

)
−
(
d(Z, γ2(t))− d(γ2(t), x0)

)
= d(γ1(s), γ2(t))− d(γ1(S), γ2(t))

≤ d(η(−s), γ2(t))− d(η(−S), γ2(t)) + 2K

≤ d(η(−s), η(vt))− d(η(−S), η(vt)) + 4K ≤ s− S + 4K.

Arguing as before, we obtain

ρ[γ2](z)− ρ[γ2](Z) ≤ s− S + 4K.

Thus, the difference ρ[γi](z)− ρ[γi](Z) assumes a positive value for i = 1 and a negative one for i = 2,
yielding ρ[γ1] ̸= ρ[γ2]. □

It remains to check that ρ(M(X)) is compact.

Lemma 5.6. Let N be a Morse gauge. The image ρ(MN (X)) under ρ of all N–Morse geodesics

starting at the basepoint x0 is compact in X
h
.

Proof. Let {γk} be a sequence of N–Morse geodesic rays. By Lemma 2.1 of [Cor17], a subsequence
{γki

} converges to γ for some N–Morse geodesic ray γ in X. The horofuction map on X is continuous
by [MT18, Lemma 3.2]. Hence for any t ≥ 0,

lim
i→∞

ργki
(t)(·) = ργ(t)(·)

By definition, we have the subsequence of points in the horofunction boundary ργi
converges to ργ . □

Lemma 5.5 and Lemma 5.6 lets us apply Theorem 5.2 to the horofunction map, as a result, we have



24 VIVIAN HE, DAVIDE SPRIANO, AND STEFANIE ZBINDEN

Corollary 5.7. Suppose G is non-hyperbolic, Morse local-to-global, and has contraction. Suppose G
acts geometrically on a geodesic metric space X. Then the image under the horofunction map ρ(M(X))
has measure zero in the horofunction compactificaion, with respect to any µ-stationary measure.

We remark that the space X where the horofunction compactification is defined need not to be the
same as the space that contains the strongly contracting geodesic ray.

We turn our attention to the other boundaries mentioned in the introduction. The quasi-redirecting
boundary satisfies the hypotheses of Theorem 5.2 by [QR24, Theorem C, Theorem E]. The HHG
boundary satisfies the hypotheses of Theorem 5.2 by [DHS17, Theorem 3.4], [Hag20], and by using the
proof of [DHS17, Theorem 4.3] to show that the image of a Morse stratum is compact.

5.1. Proof of Theorem 5.2. The proof of Theorem 5.2 relies on [MT18, Lemma 4.5]. We state the
weaker version of the lemma which we will use. Recall that µ is a probability measure on G whose
support generates G as a semigroup.

Lemma 5.8 (Adaptation of [MT18, Lemma 4.5]). Let Z be a metrizable space on which G acts by
homeomorphisms. Let ν be a µ-stationary Borel probability measure on Z. Suppose that there is a
measurable subset Y ⊂ Z satisfying the following: there is a sequence of positive numbers (ϵn)n∈N such
that for any translate fY of Y there is a sequence (gn)n∈N of group elements (which may depend on
f), such that the translates fY, g−1

1 fY, g−1
2 fY, . . . are all disjoint, and µ(gn) ≥ ϵn for each n. Then

ν(Y ) = 0.

We will apply the lemma and take Y to be the image under ρ of an N–stratum of the Morse
boundary. We now construct the gi.

Construction of the gi. In this section, G denotes a finitely generated group acting geometrically
on a geodesic metric space X ′ satisfying the Morse-local-to-global property and containing a strongly
contracting geodesic ray γ : [0,∞) → X ′. Let x′

0 be a basepoint of X ′ and δ > 0 be a constant such
that G · x′

0 is δ–dense in X ′. We can assume that γ(0) = x′
0. Let C0 be a constant such that γ is

C0–contracting. Let C be a constant such that all geodesics (and their subsegments) whose endpoints
are in the δ–neighbourhood of a C0–contracting geodesic are C–contracting. Such a constant C exists
by Lemma 2.18 and Lemma 2.17. Further, let C ′ be the constant obtain by applying Lemma 2.19 to
the constant C. Lastly, fix a Morse gauge N . Morally, one should think of Y as the N–stratum of
∂∗X

′, but while this provides intuition for how N is used in this section, we do not mention Y for the
rest of the section. Formally, we prove the following proposition

Proposition 5.9. Let N be a Morse gauge. There exists a sequence of geodesics ηi such that for all
geodesics λ starting at x′

0 and ending in G · x′
0, there exists i0, i1 such that the following holds. Let

x, y be the endpoints of ηi ∗T λ and ηj ∗T λ respectively. Then if i, j, i0, i1 are all distinct, then [x, y]
is not N–Morse. Let x′, y′ be the endpoints of ηi ∗T λ respectively λ. If i ̸∈ {i0, i1}, then [x′, y′] is not
N–Morse.

The idea is to construct geodesics ηi which are less and less Morse in a controlled way. We also
ensure that ηi starts at x

′
0 and ends in G · x′

0. We can then define gi such that gi · x′
0 is the endpoint

of ηi.
To construct ηi, we first need to construct geodesics which are very much not Morse. We do so in

the following lemma.

Lemma 5.10. Let C6 and K0 be constants. There exists a constant K ≥ K0, a strong exhaustion

(Mn)
C6,K0

n∈N and a sequence of geodesics β̂C6,K0
n : [0, Sn] → X ′ such that the following hold:
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(1) β̂C6,K0
n is not Mn–Morse

(2) β̂C6,K0
n [0,K] and β̂n[Sn −K,Sn] are not C6–contracting.

(3) β̂C6,K0
n (0), β̂C6,K0

n (Sn) ∈ G · x′
0

Proof. Define l = δ and define C7 as the constant Cl from Lemma 2.20, applied to the constant C = C6

and l = δ. Let L be the constant and M the Morse gauge such that any geodesic which is L–locally
C7–contracting is M–Morse. Define K = max{K0, L+ 1}.

By Theorem 4.3 we have that ∂∗X
′ is strongly σ-compact. In particular, there exists a strong

exhaustion (MC6,K0
n )n of ∂∗X

′.
By possibly passing to a subsequence of (MC6,K0

n )n∈N, we can assume by Lemma 2.4(iii) that for
any 7-gon the following holds. If for six of the sides we have at least one of the following

• the side is M–Morse,
• the side is MC6,K0

n –Morse,
• the side has length at most 2 + 2δ,

then the seventh side is MC6,K0

n+1 –Morse. Further, we can assume that for any 4-gon the following holds.
If for three of the sides we have at least one of the following

• the side is M–Morse,
• the side has length at most 2K ′ + 4,

then the fourth side is MC6,K0

1 –Morse.
Since X ′ is not hyperbolic, there exists a sequence of geodesics β′

n : [0, Tn] → X ′ such that β′
n is

not MC6,K0

n+2 –Morse.
Fix n. Denote by I ⊂ [0, Tn −K] the set of all s for which β′

n[s, s +K] is not C7–contracting. If
J ⊂ [0, Tn]− I is a connected interval, then β′

n(J) is L–locally C7–contracting and hence is M–Morse.

By the choice of exhaustion (MC6,K0
n )n, this implies that β′

n(J) is M
C7,K0

1 and hence MC6,K0

n+2 –Morse.
This shows that I cannot be empty. Let s and t be the infimum and supremum of I and let s ≤ s′ ≤ s+1
and t−1 ≤ t′ ≤ t be such that β′

n[s
′, s′+K] and β′

n[t
′, t′+K] are not C7–contracting. Note that by the

observation before, β′
n[0, s− 1] and β′

n[t+1, Tn] are M–Morse. Now, if t− s ≤ 2K+2, then the choice

of exhaustion implies that β′
n is MC6,K0

1 –Morse, which we know it is not. Hence t′ − s′ > 2K. We

also know that β′
n[s

′, t′] is not MC6,K0

n+1 –Morse, since by the choice of exhaustion, otherwise β′
n would

be MC6,K0

n+2 –Morse.
Let gnx

′
0 and hnx

′
0 be points in the δ–neighbourhood of β′

n(s
′) and β′

n(t
′) respectively. Define

β̂C6,K0
n : [0, Sn] → X ′ as a geodesic from gn ·x′

0 to hn ·x′
0. Since β

′
n[s

′, t′] is not MC6,K0

n+1 –Morse, we have

that β̂C6,K0
n cannot be MC6,K0

n –Morse. It remains to show that β̂C6,K0
n [0,K] and β̂C6,K0

n [Sn −K,Sn]
are not C6–contracting. This follows directly from the choice of C7, Lemma 2.20 and the fact that
β′
n[s

′, s′ +K] and β′
n[t

′ −K, t′] are not C7–contracting. □

Next we need to construct geodesics which are C–contracting and have endpoints in G · x′
0. This is

much easier. Namely, for each A ≥ 0 there exists a point x ∈ G · x′
0 with d(x, γ(A+ δ)) ≤ δ. We can

define γ̂A as a geodesic from x′
0 to x. We have that

(1) γ̂A is C–contracting. Recall that γ is C0–contracting, so this follows directly from the definition
of C.

(2) The domain of γ̂A is [0, A+ δA] for some 0 ≤ δA ≤ 2δ.

We use the notation ∗T to denote the translated concatenation, that is, for two paths α([s1, s2]) and
β([t1, t2]), with endpoints in G · x′

0 we write

α([s1, s2]) ∗T β([t1, t2]) = α([s1, s2]) ∗
(
α(s2)β(t1)

−1 · β([t1, t2])
)
,
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where, with an abuse of notation, we denote by α(s2), resp. β(t1), an element of G sending x′
0 to

α(s2), resp. β(t1).

Lemma 5.11. There exist constants C8, C9, and Q such that the following holds. For all D, for A
and B large enough, the following hold. Consider the path

pA,B = γ̂A ∗T β̂C9,1
B ∗T γ̂A

For simplicity, we write pA,B = γ1 ∗β1 ∗γ2, where γ1 and γ2 denote the first and last γ̂A subsegments,

and β1 denotes the β̂C9,1
B subsegment. We have that

(1) diam{πγ1(β1)} ≤ C8,
(2) d(γ1, γ2) ≥ D,
(3) diam{πγ1(γ2)} ≤ C8,
(4) pA,B is a Q–quasi-geodesic.

Proof. Recall that C ′ is the constant obtained from applying Lemma 2.19 to C and that γ̂A is C–
contracting. Let C1 be the constant such that any geodesic (and its subsegments) with endpoints in
the C ′–neighbourhood of a C–contracting geodesic is C9–contracting. Such a constant C9 exists by
Lemma 2.18 and Lemma 2.17. Let K be the constant obtained when applying Lemma 5.10 to the pair
C6 = C9 and K0 = 1. Let x ∈ γ1 and y ∈ β1. Let a = γ1(A + δA) and b = γ2(0) be the transition
points between segments. With this notation, we know that β1[0,K] and β1[SB − K,SB ] are not
C9–contracting.

(1): Let q ∈ β1 be the last point with d(q, γ1) ≤ C ′. By Lemma 2.18 we know that [a, q]β1 is
Φd(C

′) = C1–contracting. If d(a, q) ≥ K, we know by Lemma 2.17, that β1[0,K] is C9–contracting, a
contradiction. Hence d(a, q) < K. Lemma 2.19 implies that

diam{πγ1(β1} ≤ K + C ′.

So (1) holds for C8 = K + C ′.
(2): By Lemma 2.14, there exists a Morse gauge M such that any C–contracting geodesic is M–

Morse. For a fixed constant D, there exists a Morse gauge M ′ ≥ M such that any geodesic segment of
length at most D is M ′–Morse. Assume that d(γ1, γ2) ≤ D. Choose x ∈ γ1 and y ∈ γ2 which realize
the distance between γ1 and γ2. Now there exists a 4-gon with sides β1, [b, y]γ2 , [x, y] and [y, a]γ1 . Since
three of the sides are M ′–Morse, the third side is M ′′–Morse for a Morse gauge M ′′ only depending
on M ′. Since (MC9,1

n )n∈N is a strong exhaustion we know that there exits n such that any M ′′–Morse
geodesic is MC9,1

n –Morse. So for B ≥ n, this is a contradiction to β1 not being MC9,1
n –Morse.

(3): This follows from (2) applied to D = C ′ and Lemma 2.19.
(4): Let us summarize what we know so far, namely, for large enough B we have that πγ1(β1) ⊂

NC8
(a) and by symmetry, πγ2(β1) ⊂ NC8

(b). Hence (3) shows that πγ1(γ2) ⊂ N2C8
(a) and by

symmetry πγ2(γ1) ⊂ N2C8
(b). Hence, any path from x ∈ γ1 to y ∈ β1 passes through the C ′ + C8–

neighbourhood of a. Namely, either d(x, a) ≤ C ′+C8 and the statement is immediate d(x, a) ≥ C ′+C8

and then Lemma 2.19 implies that [x, y] passes through the C ′–neighbourhood of πγ1(y), which is at
distance at most C8 from a. Analogously, any path from x ∈ γ1 to z ∈ γ2 passes through the
2C8 + C ′–neighbourhood of a and b. The statement follows from the triangle inequality. □

Let C9,Kd be the constants from the lemma above. From now on, we denote β̂C9,Kd

B by β̂B and
MC9,Kd

n by Mn. By potentially passing to a subsequence of (Mn)n∈N we can assume that if we have a
6-gon where each of the sides except one is one of the following

• C–contracting,
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• N–Morse, where N fixed at the beginning of the subsection,
• has length at most 2C ′, where C ′ denotes the constant of Lemma 2.19 applied to C,

then the last side is M1–Morse.

Lemma 5.12. For all B, there exists a Morse gauge MB such that for all A, pA,B is MB–Morse.

Proof. Since every finite segment is Morse for some Morse gauge, we have that β̂B is NB–Morse for
some Morse gauge NB . Lemma 2.4(v) about concatenation of Morse quasi-geodesics concludes the
proof. □

Let LB ,M
′
B and QB be constants such that all LB–locally MB–Morse Q–quasi-geodesics are M ′

B–
Morse QB–quasi-geodesics.

Lemma 5.13. For all B large enough there exists a constant LB such that for all A ≥ LB, the
following holds. The path

qA,B = γ̂A ∗T β̂B ∗ γ̂A ∗T . . . ∗ β̂B ∗T γ̂A︸ ︷︷ ︸
2 · 20 − 1 times

is an M ′
B–Morse QB–quasi-geodesic.

We sometimes write qA,B = γ1 ∗ β1 ∗ . . . β20−1 ∗ γ20, where the γi and βi are the translates of γ̂A
and β̂B respectively.

Proof. Lemma 5.11 (4) yields that for all A and B large enough, the path pA,B = γ̂A ∗T β̂B ∗T γ̂A
is a Q–quasi-geodesic. Hence by Lemma 5.12, qA,B is A–locally an MB–Morse quasi-geodesic. In
particular, if A ≥ LB , the path qA,B is LB–locally an MB–Morse Q–quasi-geodesic. Hence by the
Morse-local-to-global property, we have that qA,B is an M ′

B–Morse QB–quasi-geodesic. □

Lemma 5.14. There exists a constant R, such that for large enough B and A large enough compared
to B the following holds for all 1 ≤ i ≤ 20.

diam{πγi(γ1 ∗ β1 ∗ . . . ∗ βi−1)} ≤ R.

Proof. Let C8 be the constant from Lemma 5.11. Lemma 5.11 implies that

diam{πγi(γi−1 ∗ βi−1)} ≤ 2C8.

Let D be the constant such that any C–contracting geodesic has D–bounded geodesic image, such
a constant exists by Lemma 2.16. Since qA,B is a QB–quasi-geodesic, for large enough A we have
d(γj , γi) > D and d(βj , γi) > D for all j < i− 1. Hence

diam{πγi(γj)} ≤ D and diam{πγi(βj)} ≤ D(9)

for all j < i− 1. Choosing R = 2C8 + 2 · 20D concludes the proof. □

Denote by ηA,B a geodesic from the starting point of qA,B to the endpoint of qA,B . The lemma
above implies that the distance between qA,B and ηA,B can be bounded in terms of M ′

B . The lemma
below strengthens this and shows that if any geodesic λ has large projection onto ηA,B , then it enters
the C ′–neighbourhood of some γi.

Lemma 5.15. There exists a constant T0 such that the following holds. For all B large enough, there
exists a constant DB such that for all A large enough compared to B the following holds. If a geodesic
λ satisfies

diam{πηA,B
(λ)} ≥ 4A+DB ,
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then there exists 1 ≤ i < 20 such that γi[T0, A− T0] and γi+1[T0, A− T0] are at C ′–bounded Hausdorff
distance from a subgeodesic of λ, where C ′ is the constant of Lemma 2.19 applied to C. Furthermore,
if λ and ηA,B have the same starting (respectively end) point, then the statement holds for i = 1
(respectively i = 20 − 1) and there is a prefix (respectively) suffix of λ which is at Hausdorff distance
at most C ′ from γ1[0, A− T0] (respectively γ20[T0, A+ δA]).

Proof. Assume that diam{πηA,B
(λ)} ≥ 4A + DB for some constant DB to be determined later. Let

x, y be points in λ and x′ ∈ πηA,B
(x) and y′ ∈ πηA,B(y) such that d(x′, y′) ≥ 4A + DB . Recall that

for B large enough and A large enough compared to B, qA,B is a M ′
B–Morse QB–quasi-geodesic.

Let D1 = M ′
B(1) and let D2 be the bound on the Hausdorff distance when applying Lemma 2.4(ii)

to M = M ′
B and Q = D1, let D3 = 2(D2 + D) + 1. Let x′′, y′′ be the points on [x′, y′]ηA,B

with
d(x′, x′′) = d(y′, y′′) = D3. With this setup, there exist s ≤ t such that

d(qA,B(s), x
′′) ≤ D1, d(qA,B(t), y

′′) ≤ D1 and dHaus(qA,B [s, t], [x
′′, y′′]ηA,B

) ≤ D2.

In particular,
d(qA,B [s, t], [x

′
0, x

′]ηA,B
∪ [y′, b]ηA,B

) ≥ D3,

where b denotes the endpoint of ηA,B . Recall that x′
0 is the starting point of ηA,B . Further, we have

that
d(x′′, y′′) ≥ 4A+DB − 2(D2 +D3),

and hence
t− s ≥ 4A+DB − 2(D1 +D2 +D3).

Choose DB such that
DB − 2(D1 +D2 +D3) = 2|β̂B |.

Consequently, there exists i such that γi ∗ βi ∗ γi+1 ⊂ qA,B [s, t]. Observe that the path

ζ = βi ∗ γi+1 ∗ . . . ∗ γ20 ∗ [b, y′]ηA,B
∗ [y′, y] ∗ [y, x]λ−1 ∗ [x, x′] ∗ [x′, x′

0]ηA,B
∗ γ1 ∗ β1 ∗ . . . ∗ γi−1 ∗ βi−1

as depicted in Figure 6 is a path from one endpoint of γi to its other endpoint. In particular

diam{πγi(ζ)} ≥ A.

We now proceed to bound the projection of subpaths of ζ to show that λ has a large projection onto
γi and hence has to come close to γi. Lemma 5.14 shows that

diam{πγi(βi ∗ γi+1 ∗ . . . ∗ γ20)} ≤ R and diam{πγi(γ1 ∗ β1 ∗ . . . ∗ γi−1 ∗ βi−1)} ≤ R.

We have shown that d(γi, [x′
0, x

′]ηA,B
∪ [y′, b]ηA,B

) ≥ D3 ≥ D and since γi satisfies the D–bounded
geodesic image property, we have that

diam{πγi([a, x′]ηA,B
)} ≤ D and diam{πγi([y′, b]ηA,B

)} ≤ D

Next we show that d(γi, [x, x′]) ≥ D. Assume that it is not the case, then there exists z ∈ [x, x′]
with d(z, γi) ≤ D. Since γi is contained in the D2–neighbourhood of [x′′, y′′]ηA,B

, we have that

d(z, z′) ≤ D2 +D for some z′ ∈ [x′′, y′′]ηA,B
.

Recall that
d(x′′, x′) = D3 = 2D2 + 2D + 1,

so by the triangle inequality, we have that d(z, z′) < d(z, x′), which is a contradiction to x′ ∈ πηA,B
(x).

Thus indeed, d(γi, [x, x′]) ≥ D, which implies that

diam{πγi([x, x′])} ≤ D.
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Figure 6. Depiction of the path ζ.

Analogously, we can show that

diam{πγi([y, y′])} ≤ D.

The bounds above imply that

diam{πγi([x, y]λ)} ≥ A− 3D − 2R.

Lemma 2.19 shows that the main part of the statement holds for T0 = 3D + 2R.
If λ and ηA,B both start (respectively end) at the same point x′

0 (respectively b), then we can instead
define x = x′ = x′

0 (respectively y = y′ = b) and a similar proof will show the desired statement. □

Lemma 5.16. Let B be large enough. For A large enough compared to B, we have that |η| ≥ (20−1)A.

Proof. For B large enough and A large enough compared to B, Lemma 5.14 shows that for each
1 ≤ i ≤ 20, the diameter of the projection of ηA,B onto γi is at least A−2R and hence by Lemma 2.19
C ′–fellow travels γi for at least A − 2R − 2C ′. For large enough B, Lemma 5.11 (2) shows that the
segments where ηA,B fellow travels γi and γj are disjoint for i ̸= j. Hence in total,

|ηA,B | ≥ 20(A− 2R− 2C ′) ≥ (20− 1)A

for large enough A. □

The following is an immediate consequence of the previous two lemmas.

Corollary 5.17. For large enough B and for A large enough compared to B, we have that γi[T0, A−T0]
is contained in the C ′–neighbourhood of ηA,B for all i. In particular, if x ∈ ηA,B with d(x, x′

0) ≤ A/2,
then d(x, γ1) ≤ C ′.

Lemma 5.18. Let λ be an N–Morse geodesic. For large enough B, and for A large enough compared
to B we have that diam(πηA,B

(λ)) ≤ 4A+DB.

Recall that N is the Morse gauge that we fixed earlier.
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Figure 7. In the hexagon, [x, x′] and [y, y′] have length at most C ′, the sides con-
tained in γi and γi+1 are C–contracting, and [x, y]λ is N–Morse. Hence the remaining
side βi is M1–Morse.

Proof. Assume that B is large enough and A large enough compared to B such that Lemma 5.15
holds. Assume by contradiction that diam(πηA,B

(λ)) > 4A + DB . By Lemma 5.15 there exists i

such that d(λ, γi) ≤ C ′ and d(λ, γi+1) ≤ C ′. Let x, y ∈ λ and x′ ∈ γi, y′ ∈ γi+1 be points with
d(x, x′) ≤ C ′ and d(y, y′) ≤ C ′. Let a and b be the endpoints of βi. Consider the 6–gon with sides
βi, [b, y]γi+1 , [y′, y], [y, x]λ, [x, x

′] and [x′, a]γi as depicted in Figure 7. The 6-gon has two edges which
have length at most C ′ (and hence Morse for a Morse gauge only depending on C ′), two sides which
are C–contracting, one side is N–Morse and the remaining side is βi. The choice of (Mn)n∈N implies

that βi and hence its translate β̂B is M1–Morse, which is a contradiction to β̂B not being MB–Morse
by construction. □

We now construct a sequences (Bi)i∈N and (Ai)i∈N as follows. Let (Bi)i∈N be a sequence such that

• B1 is large enough to satisfy Lemma 5.13, 5.14, 5.15, 5.17, 5.18 and Corollary 5.16
• Bi+1 = Bi+1 (and hence the Bi are also large enough to satisfy the lemmas mentioned above).

Let (Ai)i∈N be a sequence such that the following hold.

• All Ai are large enough compared to Bi so that they satisfy the lemmas mentioned above.

• We have Ai ≥ 20(Ai−1 + |β̂Bi−1
|+ 2δ + C ′ + T0 +DBi

) + 1 + LBi
.

For all i, define

ηi = ηAi,Bi
.

From now on, we write

qAi,Bi
= γ1

i ∗ β1
i ∗ . . . ∗ γ20

i .

Where γj
i and βj

i are the appropriate translates of γ̂Ai
and β̂Bi

.

Lemma 5.19. For any i ̸= j, we have that

diam(πηi(ηj)) ≤ 4Ai +DBi

Proof. If i > j, we have by construction that Ai ≥ 20(Aj + 2δ + |β̂Bj
|) ≥ |ηj | and hence

diam(πηi(ηj)) ≤ 2|ηj | ≤ 2Ai.
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Figure 8. If the diameter of the projection πηi
(ηj) is too large, then the pentagon

in the figure would force β1
i to be Morse, contradicting the construction.

It remains to show the statement for i < j. Assume by contradiction that diam(πηi(ηj)) > 4Ai+DBi .
By Lemma 5.15, there exists x ∈ ηj and y ∈ γ2

i such that d(x, y) ≤ C ′. By the triangle inequality, we
have that

d(x, x′
0) ≤ 2Ai + 2δAi + |β̂Bi |+ C ′ ≤ Aj/2.

Hence by Corollary 5.17 we have that d(x, z) ≤ C ′ for some z ∈ γ1
j . Let u be the starting point of γ2

i .

Consider the 5-gon with sides γ1
i , β

1
i , [u, y]γ2

i
, [y, z] and [z, x′

0]γ1
j
, as depicted in Figure 8. Since each of

the sides except β1
i is either C–contracting or has length at most 2C ′, the choice of (Mn)n∈N implies

that β1
i is M1–Morse, which is a contradiction to it not being MBi–Morse by construction. □

Lemma 5.20. Let λ be any geodesic starting at x′
0. Then there exists at most one index i such that

diamπηi
(λi) ≥ 4Ai +DBi

,

where λi is the translate of λ starting at the endpoint of ηi. Moreover, there exists at most one index
i such that

diamπηi
(λ) ≥ 4Ai +DBi

.

The proof of Lemma 5.20 is analogous to the proof of Lemma 5.19.

Proof. We prove the first part of the statement, and the moreover part follows from an analogous
proof. Let η̃j be a translate of ηj such that η̃j and ηi have the same endpoint, which we denote by b.

We denote by γ̃k
j and β̃k

j the translates of γk
j and βk

j such that η̃j = γ̃1
j ∗ β̃1

j ∗ . . . ∗ γ̃20
j . We have to

prove that at most one of the following holds,

diamπηi
(λi) ≥ 4Ai +DBi

or diamπη̃j
(λi) ≥ 4Aj +DBj

.

Without loss of generality, we may assume that i > j. Lemma 5.15 implies the following

• there exists a suffix λ′ of λi which is at Hausdorff distance at most C ′ from γ20
i [T0, Ai + δAi

].
• there exists a point x ∈ λi and y = γ̃20−1

j (t) such that d(x, y) ≤ C ′.
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By the triangle inequality, we have that d(x, b) ≤ C ′+2Ai+Bi. Since λ
′ is at Hausdorff distance at most

C ′ from γ20
i [T0, Ai], it has length at least Ai−T0−2C ′ > C ′+2Aj+Bj . Consequently, x ∈ λ′ and there

exists z ∈ γi with d(x, z) ≤ C ′. Now consider the 5–gon with sides γ̃20−1
j [t, Aj+δAj

], β̃20−1
j , γ̃20

j , [b, z]γ20
i

and [z, y]. Each of these sides except β̃20−1
j is either C–contracting or has length at most 2C ′. Hence by

the choice of M1, we know that β̃20−1
j and hence its translate β̂Bj

is M1–Morse and hence MBj
–Morse.

A contradiction to βBj not being MBj–Morse by construction. □

Fix a geodesic λ. If they exists, let i0, i1 be the unique integers such that

diamπηi0
(λi0) ≥ 4Ai0 +DBi0

,

diamπηi1
(λ) ≥ 4Ai1 +DBi1

,

where λi again denotes the appropriate translate of λ starting at the endpoint of ηi.

Lemma 5.21. For all i ̸= j ∈ N \ {i0, i1}, we have that πηi
(λj) ≤ 4Ai +DBi

.

Proof. If i = j, this is implied by Lemma 5.20. So from now on we assume that i ̸= j. Assume that

πηi
(λj) > 4Ai +DBi

.

Lemma 5.15, implies that there exists k such that γk
i [T0, Ai − T0] is in the C ′–neighbourhood of λj .

Corollary 5.17 implies that γk
i [T0, Ai − T0] is also in the C ′–neighbourhood of ηi. In particular, there

exists points x ∈ ηi and y ∈ λj such that d(x, y) ≤ 2C ′. Let b be the endpoint of ηj . Our observation
above shows that the path p = [x′

0, x]ηi
∗ [x, y] ∗ [y, b]λj

connects the two endpoints of ηj . Lemma 5.19
implies that

diam(πηj ([x
′
0, x]ηi)) ≤ 4Aj +DBj .

Lemma 5.20 implies that

diamπηj
([y, b]λj

) ≤ 4Aj +DBj
.

Consequently,

diamπηj ([x, y]) ≥ |ηj | − 2(4Aj +DBj ) > 4Aj +DBj .

By Lemma 5.15, there exists an integer k and a subsegment ζ of [x, y] which has C ′–bounded Hausdorff
distance from γk

j [T0, Aj − T0], implying that the length of ζ (and hence the length of [x, y]) is at least
Aj − 2T0 − 2C ′ > 2C ′, a contradiction to d(x, y) ≤ 2C ′. □

Proof of Proposition 5.9. We show that the ηi constructed above satisfy the desired properties. Let λ
be a geodesic starting at x′

0 and ending in G · x′
0. If they exists, let i0, i1 be the unique integers such

that

diamπηi0
(λi0) ≥ 4Ai0 +DBi0

,

diamπηi1
(λ) ≥ 4Ai1 +DBi1

.

Lemma 6 shows that those integers are indeed unique. Let i ̸= j be integers such that i, j, i0, i1 are
distinct. We have that

p = λi ∗ [x, y] ∗ λ−1
j ∗ η−1

j

is a path connecting the endpoints of ηi. By Lemma 5.21 we have that

πηi(λj) ≤ 4Ai +DBi .

By Lemma 5.19 we have that

diam(πηi(ηj)) ≤ 4Ai +DBi .
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Figure 9. If gif ·ξ1 and gjf ·ξ2 were translates of geodesic rays from the same Morse
stratum, then α would be Morse. But we constructed gi to guarantee that does not
happen.

Finally, by Lemma 5.20 we have that

diamπηi
(λi) ≤ 4Ai +DBi

.

Consequently, we have that

diamπηi
([x, y]) ≥ |ηi| − 3(4Ai +DBi

) > 4Ai +DBi
.

Lemma 5.18 implies that [x, y] cannot be N–Morse. The proof that [x′, y′] cannot be N–Morse is
analogous. □

Proof of the theorem. We are now ready to use Proposition 5.9 to prove Theorem 5.2.

Proof of Theorem 5.2. Let N ′′ be a Morse gauge and let MN ′′(X) be the set of N ′′–Morse geodesic
rays starting at x0. Our goal is to apply Lemma 5.8 to the set Y = ρ(MN ′′(X)). The condition on ρ
that ρ(MN ′′(X)) has to be compact ensures that it is measurable.

Since G has contraction, there exists a geodesic metric space X ′ with basepoint x′
0 satisfying the

Morse-local-to-global property and containing a strongly contracting geodesic ray γ : [0,∞) → X ′.
Fix a quasi-isometry ϕ : X → X ′ which sends x0 to x′

0. By [Cor17, Lemma 2.9], ϕ induces a map

ϕ̃ : M(X) → ∂∗X
′ and there exists a Morse gauge N ′ such that ϕ̃(MN ′′(X)) ⊂ ∂N ′

x′
0
X ′. Since G

acts geometrically on both X and X ′ we can assume that ϕ was chosen in a way such that ϕ̃ is
G–equivariant. Lastly, by Lemma 2.4(iii), there exists a Morse gauge N depending on N ′ such if a
triangle has two sides that are N ′–Morse geodesic rays, the third side is N–Morse.

Let (ηi)i∈N be a sequence of geodesics as in Proposition 5.9 constructed in the space X ′ with
respect to the Morse gauge N . Let gi ∈ G be an element such that gi · x′

0 is the endpoint of ηi. Up to
reordering, we may assume that µ(gi) ≤ µ(gi+1). Define the sequence ϵn := µ(gn+2). Fix f ∈ G, and
let λ = [x′

0, f · x′
0] and let i0, i1 be the forbidden indices of Proposition 5.9 for λ, and let (gnk

)k∈N be
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the subsequence obtained from (gi)i∈N removing the elements gi0 and gi1 . Observe that i ≤ ni ≤ i+2
and hence µ(gni) ≥ µ(gi+2) = ϵi, which is a condition we need to be able to apply Lemma 5.8.

The only thing left in order to apply Lemma 5.8 is to show that for any gi ̸= gj ∈ (gnk
)k∈N,

gifρ(MN ′′(X)) ∩ gjfρ(MN ′′(X)) = ∅ and gifρ(MN ′′(X)) ∩ fρ(MN ′′(X)) = ∅.

Since ρ is G–equivariant and maps rays that represent different elements in the Morse boundary to
different points in Z, it suffices to show that for any pair of rays ξ1, ξ2 ∈ MN ′′(X),

• the rays gifξ1 and gjfξ2 must represent different points in the Morse boundary,
• the rays gifξ1 and fξ2 must represent different points in the Morse boundary.

To show the first bullet point, note that if [gifξ1] = [gjfξ2], then gifϕ̃([ξ1]) = gjfϕ̃([ξ2]). Let
ηi = [x′

0, gi · x′
0] and ηj = [x′

0, gj · x′
0]. Consider a geodesic segment α = [gif · x′

0, gjf · x′
0], this

is depicted in Figure 9. By Proposition 5.9, α is not N–Morse, but if gifϕ̃([ξ1]) = gjfϕ̃([ξ2]), α
must be N–Morse by Lemma 2.4(iii), a contradiction. The proof for the second bullet point is the
same, replacing gj by the identity. Thus, Lemma 5.8 yields that for any Morse gauge N ′′, we have
ν(ρ(MN ′′(X))) = 0. Since the Morse boundary is σ-compact by Theorem A and the measure ν is
subadditive, we conclude ν(ρ(M(X))) = 0. □
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